Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Sci Rep ; 14(1): 9342, 2024 04 23.
Article En | MEDLINE | ID: mdl-38653763

Chickpea is a highly nutritious protein-rich source and one of the major crops to alleviate global malnutrition, but poor seed quality affects its productivity. Seed quality is essential for better crop establishment and higher yields, particularly in the uncertain climate change. The present study investigated the impact of botanical priming versus hydropriming and bavistin seed treatment on chickpea seeds. A detailed physiological (germination percentage, root and shoot length, vigour index) and biochemical (amylase, protease, dehydrogenase, phytase, and lipid peroxidation) analysis was carried out in order to assess the effect of priming treatments. Turmeric-primed seeds showed better germination rate (94.5%), seedling length, enzyme activity, and lower malondialdehyde (MDA) content. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed the expression of minor polypeptides of albumin and globulin in the primed seeds. Moreover, field experiments indicated increased crop growth, vigour, days to 50% flowering, yield and its attributing traits in turmeric-primed seeds. Botanical priming can increase chickpea yield by up to 16% over the control group. This low-cost and eco-friendly technique enhances seed and crop performance, making it a powerful tool for augmenting chickpea growth. Therefore, chickpea growers must adopt botanical priming techniques to enhance the quality of seed and crop performance. Moreover, this approach is environmentally sustainable and can help conserve natural resources in the long term. Therefore, this new approach must be widely adopted across the agricultural industry to ensure sustainable and profitable farming practices.


Cicer , Crops, Agricultural , Germination , Seeds , Cicer/growth & development , Cicer/drug effects , Cicer/metabolism , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Germination/drug effects , Crops, Agricultural/growth & development , Crops, Agricultural/drug effects , Seedlings/growth & development , Seedlings/drug effects , Seedlings/metabolism , Plant Proteins/metabolism , Malondialdehyde/metabolism
2.
Nature ; 626(7998): 401-410, 2024 Feb.
Article En | MEDLINE | ID: mdl-38297129

Ferroptosis is a form of cell death that has received considerable attention not only as a means to eradicate defined tumour entities but also because it provides unforeseen insights into the metabolic adaptation that tumours exploit to counteract phospholipid oxidation1,2. Here, we identify proferroptotic activity of 7-dehydrocholesterol reductase (DHCR7) and an unexpected prosurvival function of its substrate, 7-dehydrocholesterol (7-DHC). Although previous studies suggested that high concentrations of 7-DHC are cytotoxic to developing neurons by favouring lipid peroxidation3, we now show that 7-DHC accumulation confers a robust prosurvival function in cancer cells. Because of its far superior reactivity towards peroxyl radicals, 7-DHC effectively shields (phospho)lipids from autoxidation and subsequent fragmentation. We provide validation in neuroblastoma and Burkitt's lymphoma xenografts where we demonstrate that the accumulation of 7-DHC is capable of inducing a shift towards a ferroptosis-resistant state in these tumours ultimately resulting in a more aggressive phenotype. Conclusively, our findings provide compelling evidence of a yet-unrecognized antiferroptotic activity of 7-DHC as a cell-intrinsic mechanism that could be exploited by cancer cells to escape ferroptosis.


Burkitt Lymphoma , Dehydrocholesterols , Ferroptosis , Neuroblastoma , Animals , Humans , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Cell Survival , Dehydrocholesterols/metabolism , Lipid Peroxidation , Neoplasm Transplantation , Neuroblastoma/metabolism , Neuroblastoma/pathology , Oxidation-Reduction , Phenotype , Reproducibility of Results
3.
Mol Biotechnol ; 2023 Aug 12.
Article En | MEDLINE | ID: mdl-37572221

p53 is a tumor suppressor gene activated in response to cellular stressors that inhibits cell cycle progression and induces pro-apoptotic signaling. The protein level of p53 is well balanced by the action of several E3 ligases and deubiquitinating enzymes (DUBs). Several DUBs have been reported to negatively regulate and promote p53 degradation in tumors. In this study, we identified USP19 as a negative regulator of p53 protein level. We demonstrate a direct interaction between USP19 and p53 by pull down assay. The overexpression of USP19 promoted ubiquitination of p53 and reduced its protein half-life. We also demonstrate that CRISPR/Cas9-mediated knockout of USP19 in cervical cancer cells elevates p53 protein levels, resulting in reduced colony formation, cell migration, and cell invasion. Overall, our results indicate that USP19 negatively regulates p53 protein levels in cervical cancer progression.

4.
Theranostics ; 12(13): 5949-5970, 2022.
Article En | MEDLINE | ID: mdl-35966591

Background: Cisplatin is one of the frontline anticancer agents. However, development of cisplatin-resistance limits the therapeutic efficacy of cisplatin-based treatment. The expression of microtubule-associated serine/threonine kinase 1 (MAST1) is a primary factor driving cisplatin-resistance in cancers by rewiring the MEK pathway. However, the mechanisms responsible for MAST1 regulation in conferring drug resistance is unknown. Methods: We implemented a CRISPR/Cas9-based, genome-wide, dual screening system to identify deubiquitinating enzymes (DUBs) that govern cisplatin resistance and regulate MAST1 protein level. We analyzed K48- and K63-linked polyubiquitination of MAST1 protein and mapped the interacting domain between USP1 and MAST1 by immunoprecipitation assay. The deubiquitinating effect of USP1 on MAST1 protein was validated using rescue experiments, in vitro deubiquitination assay, immunoprecipitation assays, and half-life analysis. Furthermore, USP1-knockout A549 lung cancer cells were generated to validate the deubiquitinating activity of USP1 on MAST1 abundance. The USP1-MAST1 correlation was evaluated using bioinformatics tool and in different human clinical tissues. The potential role of USP1 in regulating MAST1-mediated cisplatin resistance was confirmed using a series of in vitro and in vivo experiments. Finally, the clinical relevance of the USP1-MAST1 axis was validated by application of small-molecule inhibitors in a lung cancer xenograft model in NSG mice. Results: The CRISPR/Cas9-based dual screening system identified USP1 as a novel deubiquitinase that interacts, stabilizes, and extends the half-life of MAST1 by preventing its K48-linked polyubiquitination. The expression analysis across human clinical tissues revealed a positive correlation between USP1 and MAST1. USP1 promotes MAST1-mediated MEK1 activation as an underlying mechanism that contributes to cisplatin-resistance in cancers. Loss of USP1 led to attenuation of MAST1-mediated cisplatin-resistance both in vitro and in vivo. The combined pharmacological inhibition of USP1 and MAST1 using small-molecule inhibitors further abrogated MAST1 level and synergistically enhanced cisplatin efficacy in a mouse xenograft model. Conclusions: Overall, our study highlights the role of USP1 in the development of cisplatin resistance and uncovers the regulatory mechanism of MAST1-mediated cisplatin resistance in cancers. Co-treatment with USP1 and MAST1 inhibitors abrogated tumor growth and synergistically enhanced cisplatin efficacy, suggesting a novel alternative combinatorial therapeutic strategy that could further improve MAST1-based therapy in patients with cisplatin-resistant tumors.


Cisplatin , Lung Neoplasms , Animals , CRISPR-Cas Systems/genetics , Cisplatin/pharmacology , Cisplatin/therapeutic use , Early Detection of Cancer , Humans , Mice , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Protein Serine-Threonine Kinases/genetics , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
5.
Mol Ther ; 30(11): 3414-3429, 2022 11 02.
Article En | MEDLINE | ID: mdl-35918893

Survivin is a component of the chromosomal passenger complex, which includes Aurora B, INCENP, and Borealin, and is required for chromosome segregation and cytokinesis. We performed a genome-wide screen of deubiquitinating enzymes for survivin. For the first time, we report that USP19 has a dual role in the modulation of mitosis and tumorigenesis by regulating survivin expression. Our results found that USP19 stabilizes and interacts with survivin in HCT116 cells. USP19 deubiquitinates survivin protein and extends its half-life. We also found that USP19 functions as a mitotic regulator by controlling the downstream signaling of survivin protein. Targeted genome knockout verified that USP19 depletion leads to several mitotic defects, including cytokinesis failure. In addition, USP19 depletion results in significant enrichment of apoptosis and reduces the growth of tumors in the mouse xenograft. We envision that simultaneous targeting of USP19 and survivin in oncologic drug development would increase therapeutic value and minimize redundancy.


Carcinogenesis , Endopeptidases , Survivin , Animals , Humans , Mice , Carcinogenesis/genetics , Deubiquitinating Enzymes , Endopeptidases/genetics , Survivin/genetics , Mitosis
6.
Cell Death Differ ; 29(9): 1689-1704, 2022 09.
Article En | MEDLINE | ID: mdl-35273362

Proteins expressed by the paired box gene 9 (PAX9) and Msh Homeobox 1 (MSX1) are intimately involved in tooth development (odontogenesis). The regulation of PAX9 and MSX1 protein turnover by deubiquitinating enzymes (DUBs) plausibly maintain the required levels of PAX9 and MSX1 during odontogenesis. Herein, we used a loss-of-function CRISPR-Cas9-mediated DUB KO library kit to screen for DUBs that regulate PAX9 and MSX1 protein levels. We identify and demonstrate that USP49 interacts with and deubiquitinates PAX9 and MSX1, thereby extending their protein half-lives. On the other hand, the loss of USP49 reduces the levels of PAX9 and MSX1 proteins, which causes transient retardation of odontogenic differentiation in human dental pulp stem cells and delays the differentiation of human pluripotent stem cells into the neural crest cell lineage. USP49 depletion produced several morphological defects during tooth development, such as reduced dentin growth with shrunken enamel space, and abnormal enamel formation including irregular mineralization. In sum, our results suggest that deubiquitination of PAX9 and MSX1 by USP49 stabilizes their protein levels to facilitate successful odontogenesis.


MSX1 Transcription Factor , PAX9 Transcription Factor , Deubiquitinating Enzymes/genetics , Humans , MSX1 Transcription Factor/genetics , MSX1 Transcription Factor/metabolism , Odontogenesis/genetics , PAX9 Transcription Factor/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitin-Specific Proteases/genetics
7.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article En | MEDLINE | ID: mdl-35055037

The osteoblast differentiation capacity of mesenchymal stem cells must be tightly regulated, as inadequate bone mineralization can lead to osteoporosis, and excess bone formation can cause the heterotopic ossification of soft tissues. The balanced protein level of Msh homeobox 1 (MSX1) is critical during normal osteogenesis. To understand the factors that prevent MSX1 protein degradation, the identification of deubiquitinating enzymes (DUBs) for MSX1 is essential. In this study, we performed loss-of-function-based screening for DUBs regulating MSX1 protein levels using the CRISPR/Cas9 system. We identified ubiquitin-specific protease 11 (USP11) as a protein regulator of MSX1 and further demonstrated that USP11 interacts and prevents MSX1 protein degradation by its deubiquitinating activity. Overexpression of USP11 enhanced the expression of several osteogenic transcriptional factors in human mesenchymal stem cells (hMSCs). Additionally, differentiation studies revealed reduced calcification and alkaline phosphatase activity in USP11-depleted cells, while overexpression of USP11 enhanced the differentiation potential of hMSCs. These results indicate the novel role of USP11 during osteogenic differentiation and suggest USP11 as a potential target for bone regeneration.


CRISPR-Cas Systems , Cell Differentiation/genetics , Deubiquitinating Enzymes/genetics , Genome-Wide Association Study/methods , Osteogenesis/genetics , Thiolester Hydrolases/genetics , Deubiquitinating Enzymes/metabolism , Gene Expression Regulation , Humans , MSX1 Transcription Factor/genetics , MSX1 Transcription Factor/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Proteolysis , Regenerative Medicine , Thiolester Hydrolases/metabolism , Transcription Factors/metabolism , Ubiquitination
8.
Theranostics ; 11(20): 9752-9771, 2021.
Article En | MEDLINE | ID: mdl-34815782

Background: The most commonly preferred chemotherapeutic agents to treat cancers are small-molecule drugs. However, the differential sensitivity of various cancer cells to small molecules and untargeted delivery narrow the range of potential therapeutic applications. The mechanisms responsible for drug resistance in a variety of cancer cells are also largely unknown. Several deubiquitinating enzymes (DUBs) are the main determinants of drug resistance in cancer cells. Methods: We used CRISPR-Cas9 to perform genome-scale knockout of the entire set of genes encoding ubiquitin-specific proteases (USPs) and systematically screened for DUBs resistant to the clinically evaluated anticancer compound YM155. A series of in vitro and in vivo experiments were conducted to reveal the relationship between USP32 and SLC35F2 on YM155-mediated DNA damage in cancer cells. Results: CRISPR-based dual-screening method identified USP32 as a novel DUB that governs resistance for uptake of YM155 by destabilizing protein levels of SLC35F2, a solute-carrier protein essential for the uptake of YM155. The expression of USP32 and SLC35F2 was negatively correlated across a panel of tested cancer cell lines. YM155-resistant cancer cells in particular exhibited elevated expression of USP32 and low expression of SLC35F2. Conclusion: Collectively, our DUB-screening strategy revealed a resistance mechanism governed by USP32 associated with YM155 resistance in breast cancers, one that presents an attractive molecular target for anti-cancer therapies. Targeted genome knockout verified that USP32 is the main determinant of SLC35F2 protein stability in vitro and in vivo, suggesting a novel way to treat tumors resistant to small-molecule drugs.


Imidazoles/pharmacology , Membrane Transport Proteins/metabolism , Naphthoquinones/pharmacology , Ubiquitin Thiolesterase/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , DNA Damage , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , Deubiquitinating Enzymes/pharmacology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/physiology , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Imidazoles/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Membrane Transport Proteins/genetics , Naphthoquinones/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Solute Carrier Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
9.
Int J Mol Sci ; 22(16)2021 Aug 07.
Article En | MEDLINE | ID: mdl-34445214

Deubiquitinating enzymes play key roles in the precise modulation of Aurora B-an essential cell cycle regulator. The expression of Aurora B increases before the onset of mitosis and decreases during mitotic exit; an imbalance in these levels has a severe impact on the fate of the cell cycle. Dysregulation of Aurora B can lead to aberrant chromosomal segregation and accumulation of errors during mitosis, eventually resulting in cytokinesis failure. Thus, it is essential to identify the precise regulatory mechanisms that modulate Aurora B levels during the cell division cycle. Using a deubiquitinase knockout strategy, we identified USP48 as an important candidate that can regulate Aurora B protein levels during the normal cell cycle. Here, we report that USP48 interacts with and stabilizes the Aurora B protein. Furthermore, we showed that the deubiquitinating activity of USP48 helps to maintain the steady-state levels of Aurora B protein by regulating its half-life. Finally, USP48 knockout resulted in delayed progression of cell cycle due to accumulation of mitotic defects and ultimately cytokinesis failure, suggesting the role of USP48 in cell cycle regulation.


Aurora Kinase B/metabolism , Cytokinesis , Mitosis , Ubiquitin-Specific Proteases/metabolism , Aurora Kinase B/genetics , Enzyme Stability , HEK293 Cells , HeLa Cells , Humans , Ubiquitin-Specific Proteases/genetics
10.
Int J Mol Sci ; 21(23)2020 Nov 28.
Article En | MEDLINE | ID: mdl-33260674

Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by the dysfunction of the enzyme phenylalanine hydroxylase (PAH). Alterations in the level of PAH leads to the toxic accumulation of phenylalanine in the blood and brain. Protein degradation mediated by ubiquitination is a principal cellular process for maintaining protein homeostasis. Therefore, it is important to identify the E3 ligases responsible for PAH turnover and proteostasis. Here, we report that anaphase-promoting complex/cyclosome-Cdh1 (APC/C)Cdh1 is an E3 ubiquitin ligase complex that interacts and promotes the polyubiquitination of PAH through the 26S proteasomal pathway. Cdh1 destabilizes and declines the half-life of PAH. In contrast, the CRISPR/Cas9-mediated knockout of Cdh1 stabilizes PAH expression and enhances phenylalanine metabolism. Additionally, our current study demonstrates the clinical relevance of PAH and Cdh1 correlation in hepatocellular carcinoma (HCC). Overall, we show that PAH is a prognostic marker for HCC and Cdh1 could be a potential therapeutic target to regulate PAH-mediated physiological and metabolic disorders.


Anaphase-Promoting Complex-Cyclosome/metabolism , Phenylalanine Hydroxylase/metabolism , Ubiquitin-Protein Ligases/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Enzyme Stability , HEK293 Cells , Half-Life , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Phenylalanine/metabolism , Polyubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Proteolysis , Ubiquitination
11.
Int J Mol Sci ; 21(22)2020 Nov 18.
Article En | MEDLINE | ID: mdl-33218190

Fumarylacetoacetate hydrolase (FAH) is the last enzyme in the degradation pathway of the amino acids tyrosine and phenylalanine in mammals that catalyzes the hydrolysis of 4-fumarylacetoacetate into acetoacetate and fumarate. Mutations of the FAH gene are associated with hereditary tyrosinemia type I (HT1), resulting in reduced protein stability, misfolding, accelerated degradation and deficiency in functional proteins. Identifying E3 ligases, which are necessary for FAH protein stability and degradation, is essential. In this study, we demonstrated that the FAH protein level is elevated in liver cancer tissues compared to that in normal tissues. Further, we showed that the FAH protein undergoes 26S proteasomal degradation and its protein turnover is regulated by the anaphase-promoting complex/cyclosome-Cdh1 (APC/C)Cdh1 E3 ubiquitin ligase complex. APC/CCdh1 acts as a negative stabilizer of FAH protein by promoting FAH polyubiquitination and decreases the half-life of FAH protein. Thus, we envision that Cdh1 might be a key factor in the maintenance of FAH protein level to regulate FAH-mediated physiological functions.


Antigens, CD/genetics , Cdh1 Proteins/genetics , Hydrolases/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Anaphase-Promoting Complex-Cyclosome/metabolism , Antigens, CD/metabolism , Cdh1 Proteins/metabolism , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Hydrolases/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Proteolysis , Ubiquitin-Protein Ligases/metabolism
12.
Cancers (Basel) ; 12(11)2020 Nov 04.
Article En | MEDLINE | ID: mdl-33158118

Cancer stem cells (CSCs) have both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Thus, CSCs are considered to be promising therapeutic targets for cancer therapy. The function of CSCs can be regulated by ubiquitination and deubiquitination of proteins related to the specific stemness of the cells executing various stem cell fate choices. To regulate the balance between ubiquitination and deubiquitination processes, the disassembly of ubiquitin chains from specific substrates by deubiquitinating enzymes (DUBs) is crucial. Several key developmental and signaling pathways have been shown to play essential roles in this regulation. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of CSCs. These signaling pathways have been experimentally shown to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. In this review, we focus on the DUBs involved in CSCs signaling pathways, which are vital in regulating their stem-cell fate determination.

13.
Drug Discov Today ; 23(12): 1974-1982, 2018 12.
Article En | MEDLINE | ID: mdl-29864528

The ability of cancers to evade conventional treatments, such as chemotherapy and radiation therapy, has been attributed to a subpopulation of cancer stem cells (CSCs). CSCs are regulated by mechanisms similar to those that regulate normal stem cells (NSCs), including processes involving ubiquitination and deubiquitination enzymes (DUBs) that regulate the expression of various factors, such as Notch, Wnt, Sonic Hedgehog (Shh), and Hippo. In this review, we discuss the roles of various DUBs involved in the regulation of core stem cell transcription factors and CSC-related proteins that are implicated in the modulation of cellular processes and carcinogenesis. In addition, we discuss the various DUB inhibitors that have been designed to target processes relevant to cancer and CSC maintenance.


Deubiquitinating Enzymes/metabolism , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Animals , Carcinogenesis/metabolism , Humans , Transcription Factors/metabolism
...