Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
bioRxiv ; 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38585962

Single-stranded DNA (ssDNA) intermediates, which emerge during DNA metabolic processes are shielded by Replication Protein A (RPA). RPA binds to ssDNA and acts as a gatekeeper, directing the ssDNA towards downstream DNA metabolic pathways with exceptional specificity. Understanding the mechanistic basis for such RPA-dependent specificity requires a comprehensive understanding of the structural conformation of ssDNA when bound to RPA. Previous studies suggested a stretching of ssDNA by RPA. However, structural investigations uncovered a partial wrapping of ssDNA around RPA. Therefore, to reconcile the models, in this study, we measured the end-to-end distances of free ssDNA and RPA-ssDNA complexes using single-molecule FRET and Double Electron-Electron Resonance (DEER) spectroscopy and found only a small systematic increase in the end-to-end distance of ssDNA upon RPA binding. This change does not align with a linear stretching model but rather supports partial wrapping of ssDNA around the contour of DNA binding domains of RPA. Furthermore, we reveal how phosphorylation at the key Ser-384 site in the RPA70 subunit provides access to the wrapped ssDNA by remodeling the DNA-binding domains. These findings establish a precise structural model for RPA-bound ssDNA, providing valuable insights into how RPA facilitates the remodeling of ssDNA for subsequent downstream processes.

2.
Methods ; 223: 95-105, 2024 Mar.
Article En | MEDLINE | ID: mdl-38301751

DNA metabolic processes including replication, repair, recombination, and telomere maintenance occur on single-stranded DNA (ssDNA). In each of these complex processes, dozens of proteins function together on the ssDNA template. However, when double-stranded DNA is unwound, the transiently open ssDNA is protected and coated by the high affinity heterotrimeric ssDNA binding Replication Protein A (RPA). Almost all downstream DNA processes must first remodel/remove RPA or function alongside to access the ssDNA occluded under RPA. Formation of RPA-ssDNA complexes trigger the DNA damage checkpoint response and is a key step in activating most DNA repair and recombination pathways. Thus, in addition to protecting the exposed ssDNA, RPA functions as a gatekeeper to define functional specificity in DNA maintenance and genomic integrity. RPA achieves functional dexterity through a multi-domain architecture utilizing several DNA binding and protein-interaction domains connected by flexible linkers. This flexible and modular architecture enables RPA to adopt a myriad of configurations tailored for specific DNA metabolic roles. To experimentally capture the dynamics of the domains of RPA upon binding to ssDNA and interacting proteins we here describe the generation of active site-specific fluorescent versions of human RPA (RPA) using 4-azido-L-phenylalanine (4AZP) incorporation and click chemistry. This approach can also be applied to site-specific modifications of other multi-domain proteins. Fluorescence-enhancement through non-canonical amino acids (FEncAA) and Förster Resonance Energy Transfer (FRET) assays for measuring dynamics of RPA on DNA are also described. The fluorescent human RPA described here will enable high-resolution structure-function analysis of RPA-ssDNA interactions.


DNA , Replication Protein A , Humans , Replication Protein A/genetics , DNA/genetics , DNA, Single-Stranded/genetics , Amino Acids , Biological Assay , Coloring Agents
3.
J Mol Biol ; 436(6): 168491, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38360091

Replication Protein A (RPA) is asingle strandedDNA(ssDNA)binding protein that coordinates diverse DNA metabolic processes including DNA replication, repair, and recombination. RPA is a heterotrimeric protein with six functional oligosaccharide/oligonucleotide (OB) domains and flexible linkers. Flexibility enables RPA to adopt multiple configurations andis thought to modulate its function. Here, usingsingle moleculeconfocal fluorescencemicroscopy combinedwith optical tweezers and coarse-grained molecular dynamics simulations, we investigated the diffusional migration of single RPA molecules on ssDNA undertension.The diffusioncoefficientDis the highest (20,000nucleotides2/s) at 3pNtension and in 100 mMKCl and markedly decreases whentensionor salt concentrationincreases. We attribute the tension effect to intersegmental transfer which is hindered by DNA stretching and the salt effect to an increase in binding site size and interaction energy of RPA-ssDNA. Our integrative study allowed us to estimate the size and frequency of intersegmental transfer events that occur through transient bridging of distant sites on DNA by multiple binding sites on RPA. Interestingly, deletion of RPA trimeric core still allowed significant ssDNA binding although the reduced contact area made RPA 15-fold more mobile. Finally, we characterized the effect of RPA crowding on RPA migration. These findings reveal how the high affinity RPA-ssDNA interactions are remodeled to yield access, a key step in several DNA metabolic processes.


DNA, Single-Stranded , Replication Protein A , DNA Replication , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Protein Binding/genetics , Replication Protein A/chemistry , Replication Protein A/genetics , Replication Protein A/metabolism
4.
bioRxiv ; 2024 Apr 03.
Article En | MEDLINE | ID: mdl-37214874

Human replication protein A (RPA) is a heterotrimeric ssDNA binding protein responsible for many aspects of cellular DNA metabolism. Dynamic interactions of the four RPA DNA binding domains (DBDs) with DNA control replacement of RPA by downstream proteins in various cellular metabolic pathways. RPA plays several important functions at telomeres where it binds to and melts telomeric G-quadruplexes, non-canonical DNA structures formed at the G-rich telomeric ssDNA overhangs. Here, we combine single-molecule total internal reflection fluorescence microscopy (smTIRFM) and mass photometry (MP) with biophysical and biochemical analyses to demonstrate that heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) specifically remodels RPA bound to telomeric ssDNA by dampening the RPA configurational dynamics and forming a ternary complex. Uniquely, among hnRNPA1 target RNAs, telomeric repeat-containing RNA (TERRA) is selectively capable of releasing hnRNPA1 from the RPA-telomeric DNA complex. We speculate that this telomere specific RPA-DNA-hnRNPA1 complex is an important structure in telomere protection. One Sentence Summary: At the single-stranded ends of human telomeres, the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) binds to and modulates conformational dynamics of the ssDNA binding protein RPA forming a ternary complex which is controlled by telomeric repeat-containing RNA (TERRA).

5.
bioRxiv ; 2023 Nov 23.
Article En | MEDLINE | ID: mdl-38045304

DNA metabolic processes including replication, repair, recombination, and telomere maintenance occur on single-stranded DNA (ssDNA). In each of these complex processes, dozens of proteins function together on the ssDNA template. However, when double-stranded DNA is unwound, the transiently open ssDNA is protected and coated by the high affinity heterotrimeric ssDNA binding Replication Protein A (RPA). Almost all downstream DNA processes must first remodel/remove RPA or function alongside to access the ssDNA occluded under RPA. Formation of RPA-ssDNA complexes trigger the DNA damage checkpoint response and is a key step in activating most DNA repair and recombination pathways. Thus, in addition to protecting the exposed ssDNA, RPA functions as a gatekeeper to define functional specificity in DNA maintenance and genomic integrity. RPA achieves functional dexterity through a multi-domain architecture utilizing several DNA binding and protein-interaction domains connected by flexible linkers. This flexible and modular architecture enables RPA to adopt a myriad of configurations tailored for specific DNA metabolic roles. To experimentally capture the dynamics of the domains of RPA upon binding to ssDNA and interacting proteins we here describe the generation of active site-specific fluorescent versions of human RPA (RPA) using 4-azido-L-phenylalanine (4AZP) incorporation and click chemistry. This approach can also be applied to site-specific modifications of other multi-domain proteins. Fluorescence-enhancement through non-canonical amino acids (FEncAA) and Förster Resonance Energy Transfer (FRET) assays for measuring dynamics of RPA on DNA are also described.

6.
Life (Basel) ; 13(7)2023 Jul 10.
Article En | MEDLINE | ID: mdl-37511907

BACKGROUND: AKT1 is a serine/threonine kinase necessary for the mediation of apoptosis, angiogenesis, metabolism, and cell proliferation in both normal and cancerous cells. The mutations in the AKT1 gene have been associated with different types of cancer. Further, the AKT1 gene mutations are also reported to be associated with other diseases such as Proteus syndrome and Cowden syndromes. Hence, this study aims to identify the deleterious AKT1 missense SNPs and predict their effect on the function and structure of the AKT1 protein using various computational tools. METHODS: Extensive in silico approaches were applied to identify deleterious SNPs of the human AKT1 gene and assessment of their impact on the function and structure of the AKT1 protein. The association of these highly deleterious missense SNPs with different forms of cancers was also analyzed. The in silico approach can help in reducing the cost and time required to identify SNPs associated with diseases. RESULTS: In this study, 12 highly deleterious SNPs were identified which could affect the structure and function of the AKT1 protein. Out of the 12, four SNPs-namely, G157R, G159V, G336D, and H265Y-were predicted to be located at highly conserved residues. G157R could affect the ligand binding to the AKT1 protein. Another highly deleterious SNP, R273Q, was predicted to be associated with liver cancer. CONCLUSIONS: This study can be useful for pharmacogenomics, molecular diagnosis of diseases, and developing inhibitors of the AKT1 oncogene.

7.
Nucleic Acids Res ; 51(13): 6738-6753, 2023 07 21.
Article En | MEDLINE | ID: mdl-37264933

Many types of damage, including abasic sites, block replicative DNA polymerases causing replication fork uncoupling and generating ssDNA. AP-Endonuclease 1 (APE1) has been shown to cleave abasic sites in ssDNA. Importantly, APE1 cleavage of ssDNA at a replication fork has significant biological implications by generating double strand breaks that could collapse the replication fork. Despite this, the molecular basis and efficiency of APE1 processing abasic sites at replication forks remain elusive. Here, we investigate APE1 cleavage of abasic substrates that mimic APE1 interactions at stalled replication forks or gaps. We determine that APE1 has robust activity on these substrates, like dsDNA, and report rates for cleavage and product release. X-ray structures visualize the APE1 active site, highlighting an analogous mechanism is used to process ssDNA substrates as canonical APE1 activity on dsDNA. However, mutational analysis reveals R177 to be uniquely critical for the APE1 ssDNA cleavage mechanism. Additionally, we investigate the interplay between APE1 and Replication Protein A (RPA), the major ssDNA-binding protein at replication forks, revealing that APE1 can cleave an abasic site while RPA is still bound to the DNA. Together, this work provides molecular level insights into abasic ssDNA processing by APE1, including the presence of RPA.


DNA Replication , DNA-(Apurinic or Apyrimidinic Site) Lyase , DNA/chemistry , DNA Damage , DNA Repair , DNA, Single-Stranded/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Endonucleases/metabolism , Replication Protein A/metabolism
8.
J Biomol Struct Dyn ; : 1-19, 2023 Jun 29.
Article En | MEDLINE | ID: mdl-37382214

Gastrointestinal diarrhea is majorly caused by the rotavirus (RV) in the children who generally are under the age group of 5 years. WHO estimates that ∼95% of the children contract RV infection, by this age. The disease is highly contagious; notably in many cases, it is proven fatal with high mortality rates especially in the developing countries. In India alone, an estimated 145,000 yearly deaths occurs due to RV related gastrointestinal diarrhea. WHO pre-qualified vaccines that are available for RV are all live attenuated vaccines with modest efficacy range between 40 and 60%. Further, the risk of intussusceptions has been reported in some children on RV vaccination. Thus, in a quest to develop alternative candidate to overcome challenges associated with these oral vaccines, we chose immunoinformatics approach to design a multi-epitope vaccine (MEV) while targeting the outer capsid viral proteinsVP4 and VP7 of the neonatal strains of rotavirus. Interestingly, ten epitopes, that is, six CD8+T-cells and four CD4+T-cell epitopes were identified which were predicted to be antigenic, non-allergic, non-toxic and stable. These epitopes were then linked to adjuvants, linkers, and PADRE sequences to create a multi-epitope vaccine for RV. The in silico designed RV-MEV and human TLR5 complex displayed stable interactions during molecular dynamics simulations. Further, the immune simulation studies of RV-MEV corroborated that the vaccine candidate emerges as a promising immunogen. Future investigations while performing in vitro and in vivo analyses with designed RV-MEV construct are highly desirable to warrant the potential of this vaccine candidate in protective immunity against different strains of RVs infecting neonates.Communicated by Ramaswamy H. Sarma.

9.
Nat Commun ; 14(1): 3008, 2023 05 25.
Article En | MEDLINE | ID: mdl-37230964

Errors in chromosome segregation underlie genomic instability associated with cancers. Resolution of replication and recombination intermediates and protection of vulnerable single-stranded DNA (ssDNA) intermediates during mitotic progression requires the ssDNA binding protein Replication Protein A (RPA). However, the mechanisms that regulate RPA specifically during unperturbed mitotic progression are poorly resolved. RPA is a heterotrimer composed of RPA70, RPA32 and RPA14 subunits and is predominantly regulated through hyperphosphorylation of RPA32 in response to DNA damage. Here, we have uncovered a mitosis-specific regulation of RPA by Aurora B kinase. Aurora B phosphorylates Ser-384 in the DNA binding domain B of the large RPA70 subunit and highlights a mode of regulation distinct from RPA32. Disruption of Ser-384 phosphorylation in RPA70 leads to defects in chromosome segregation with loss of viability and a feedback modulation of Aurora B activity. Phosphorylation at Ser-384 remodels the protein interaction domains of RPA. Furthermore, phosphorylation impairs RPA binding to DSS1 that likely suppresses homologous recombination during mitosis by preventing recruitment of DSS1-BRCA2 to exposed ssDNA. We showcase a critical Aurora B-RPA signaling axis in mitosis that is essential for maintaining genomic integrity.


Chromosome Segregation , Replication Protein A , Replication Protein A/metabolism , Aurora Kinase B/metabolism , DNA-Binding Proteins/metabolism , Phosphorylation , DNA, Single-Stranded/genetics
10.
bioRxiv ; 2023 May 09.
Article En | MEDLINE | ID: mdl-37215012

In humans, DNA polymerase δ (Pol δ) holoenzymes, comprised of Pol δ and the processivity sliding clamp, proliferating cell nuclear antigen (PCNA), carry out DNA synthesis during lagging strand DNA replication, initiation of leading strand DNA replication, and the major DNA damage repair and tolerance pathways. Pol δ holoenzymes are assembled at primer/template (P/T) junctions and initiate DNA synthesis in a coordinated process involving the major single strand DNA-binding protein complex, replication protein A (RPA), the processivity sliding clamp loader, replication factor C (RFC), PCNA, and Pol δ. Each of these factors interact uniquely with a P/T junction and most directly engage one another. Currently, the interplay between these macromolecular interactions is largely unknown. In the present study, novel Förster Resonance Energy Transfer (FRET) assays reveal that dynamic interactions of RPA with a P/T junction during assembly of a Pol δ holoenzyme and initiation of DNA synthesis maintain RPA at a P/T junction and accommodate RFC, PCNA, and Pol δ, maximizing the efficiency of each process. Collectively, these studies significantly advance our understanding of human DNA replication and DNA repair.

11.
J Biomol Struct Dyn ; 41(22): 12464-12479, 2023.
Article En | MEDLINE | ID: mdl-36935104

MERS-CoV, a zoonotic virus, poses a serious threat to public health globally. Thus, it is imperative to develop an effective vaccination strategy for protection against MERS-CoV. Immunoinformatics and computational biology tools provide a faster and more cost-effective strategy to design potential vaccine candidates. In this work, the spike proteins from different strains of MERS-CoV were selected to predict HTL-epitopes that show affinity for T-helper MHC-class II HTL allelic determinant (HLA-DRB1:0101). The antigenicity and conservation of these epitopes among the selected spike protein variants in different MERS-CoV strains were analyzed. The analysis identified five epitopes with high antigenicity: QSIFYRLNGVGITQQ, DTIKYYSIIPHSIRS, PEPITSLNTKYVAPQ, INGRLTTLNAFVAQQ and GDMYVYSAGHATGTT. Then, a multi-epitope vaccine candidate was designed using linkers and adjuvant molecules. Finally, the vaccine construct was subjected to molecular docking with TLR5 (Toll-like receptor-5). The proposed vaccine construct had strong binding energy of -32.3 kcal/mol when interacting with TLR5.Molecular dynamics simulation analysis showed that the complex of the vaccine construct and TLR5 is stable. Analysis using in silico immune simulation also showed that the prospective multi-epitope vaccine design had the potential to elicit a response within 70 days, with the immune system producing cytokines and immunoglobulins. Finally, codon adaptation and in silico cloning analysis showed that the candidate vaccine could be expressed in the Escherichia coli K12 strain. Here we also designed support vaccine construct MEV-2 by using B-cell and CD8+ CTL epitopes to generate the complete immunogenic effect. This study opens new avenues for the extension of research on MERS vaccine development.Communicated by Ramaswamy H. Sarma.


Middle East Respiratory Syndrome Coronavirus , Viral Vaccines , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Molecular Docking Simulation , Toll-Like Receptor 5 , Prospective Studies , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Viral Vaccines/chemistry , Molecular Dynamics Simulation , Vaccine Development , Computational Biology , Vaccines, Subunit
12.
Methods ; 211: 68-72, 2023 03.
Article En | MEDLINE | ID: mdl-36781034

The Shwachman-Diamond syndrome (SDS) is a rare inherited ribosomopathy that is predominantly caused by mutations in the Shwachman-Bodian-Diamond Syndrome gene (SBDS). SBDS is a ribosomal maturation factor that is essential for the release of eukaryotic translation initiation factor 6 (eIF6) from 60S ribosomal subunits during the late stages of 60S maturation. Release of eIF6 is critical to permit inter-subunit interactions between the 60S and 40S subunits and to form translationally competent 80S monosomes. SBDS has three key domains that are highly flexible and adopt varied conformations in solution. To better understand the domain dynamics of SBDS upon binding to 60S and to assess the effects of SDS-disease specific mutations, we aimed to site-specifically label individual domains of SBDS. Here we detail the generation of a fluorescently labeled SBDS to monitor the dynamics of select domains upon binding to 60S. We describe the incorporation of 4-azido-l-phenylalanine (4AZP), a noncanonical amino acid in human SBDS. Site-specific labeling of SBDS using fluorophore and assessment of 60S binding activity are also described. Such labeling approaches to capture the interactions of individual domains of SBDS with 60S are also applicable to study the dynamics of other multi-domain proteins that interact with the ribosomal subunits.


Proteins , Ribosome Subunits, Large, Eukaryotic , Humans , Ribosome Subunits, Large, Eukaryotic/chemistry , Shwachman-Diamond Syndrome/metabolism , Proteins/chemistry , Ribosomes/metabolism , Mutation
13.
Viruses ; 14(11)2022 10 27.
Article En | MEDLINE | ID: mdl-36366472

Monkeypox is a self-limiting zoonotic viral disease and causes smallpox-like symptoms. The disease has a case fatality ratio of 3-6% and, recently, a multi-country outbreak of the disease has occurred. The currently available vaccines that have provided immunization against monkeypox are classified as live attenuated vaccinia virus-based vaccines, which pose challenges of safety and efficacy in chronic infections. In this study, we have used an immunoinformatics-aided design of a multi-epitope vaccine (MEV) candidate by targeting monkeypox virus (MPXV) glycoproteins and membrane proteins. From these proteins, seven epitopes (two T-helper cell epitopes, four T-cytotoxic cell epitopes and one linear B cell epitopes) were finally selected and predicted as antigenic, non-allergic, interferon-γ activating and non-toxic. These epitopes were linked to adjuvants to design a non-allergic and antigenic candidate MPXV-MEV. Further, molecular docking and molecular dynamics simulations predicted stable interactions between predicted MEV and human receptor TLR5. Finally, the immune-simulation analysis showed that the candidate MPXV-MEV could elicit a human immune response. The results obtained from these in silico experiments are promising but require further validation through additional in vivo experiments.


Monkeypox virus , Mpox (monkeypox) , Humans , Epitopes, T-Lymphocyte , Molecular Docking Simulation , Vaccines, Subunit , Membrane Proteins , Epitopes, B-Lymphocyte , Peptides , Glycoproteins , Computational Biology/methods
14.
Nat Commun ; 13(1): 5152, 2022 09 02.
Article En | MEDLINE | ID: mdl-36056028

Replication Protein A (RPA) is a heterotrimeric complex that binds to single-stranded DNA (ssDNA) and recruits over three dozen RPA-interacting proteins to coordinate multiple aspects of DNA metabolism including DNA replication, repair, and recombination. Rtt105 is a molecular chaperone that regulates nuclear localization of RPA. Here, we show that Rtt105 binds to multiple DNA binding and protein-interaction domains of RPA and configurationally staples the complex. In the absence of ssDNA, Rtt105 inhibits RPA binding to Rad52, thus preventing spurious binding to RPA-interacting proteins. When ssDNA is available, Rtt105 promotes formation of high-density RPA nucleoprotein filaments and dissociates during this process. Free Rtt105 further stabilizes the RPA-ssDNA filaments by inhibiting the facilitated exchange activity of RPA. Collectively, our data suggest that Rtt105 sequesters free RPA in the nucleus to prevent untimely binding to RPA-interacting proteins, while stabilizing RPA-ssDNA filaments at DNA lesion sites.


RNA-Binding Proteins/metabolism , Replication Protein A/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae , DNA Replication , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Protein Binding , RNA-Binding Proteins/chemistry , Recombination, Genetic , Replication Protein A/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry
15.
Front Immunol ; 13: 865180, 2022.
Article En | MEDLINE | ID: mdl-35799781

Dengue virus (DENV) is an arboviral disease affecting more than 400 million people annually. Only a single vaccine formulation is available commercially and many others are still under clinical trials. Despite all the efforts in vaccine designing, the improvement in vaccine formulation against DENV is very much needed. In this study, we used a roboust immunoinformatics approach, targeting all the four serotypes of DENV to design a multi-epitope vaccine. A total of 13501 MHC II binding CD4+ epitope peptides were predicted from polyprotein sequences of four dengue virus serotypes. Among them, ten conserved epitope peptides that were interferon-inducing were selected and found to be conserved among all the four dengue serotypes. The vaccine was formulated using antigenic, non-toxic and conserved multi epitopes discovered in the in-silico study. Further, the molecular docking and molecular dynamics predicted stable interactions between predicted vaccine and immune receptor, TLR-5. Finally, one of the mapped epitope peptides was synthesized for the validation of antigenicity and antibody production ability where the in-vivo tests on rabbit model was conducted. Our in-vivo analysis clearly indicate that the imunogen designed in this study could stimulate the production of antibodies which further suggest that the vaccine designed possesses good immunogenicity.


Dengue Virus , Vaccines , Animals , Epitopes , Humans , Molecular Docking Simulation , Peptides , Rabbits , Serogroup
16.
J Genet Eng Biotechnol ; 20(1): 41, 2022 Mar 07.
Article En | MEDLINE | ID: mdl-35254546

BACKGROUND: The Tropheryma whipplei causes acute gastroenteritis to neuronal damages in Homo sapiens. Genomics and codon adaptation studies would be helpful advancements of disease evolution prediction, prevention, and treatment of disease. The codon usage data and codon usage measurement tools were deployed to detect the rare, very rare codons, and also synonymous codons usage. The higher effective number of codon usage values indicates the low codon usage bias in T. whipplei and also in the 23S and 16S ribosomal RNA genes. RESULTS: In T. whipplei, it was found to hold low codon biasness in genomic sets. The synonymous codons possess the base content in 3rd position that was calculated as A3S% (24.47 and 22.88), C3S% (20.99 and 22.88), T3S% (21.47 and 19.53), and G3S% (33.08 and 34.71) for 23s and 16s rRNA, respectively. CONCLUSION: Amino acids like valine, aspartate, leucine, and phenylalanine hold high codon usage frequency and also found to be present in epitopes KPSYLSALSAHLNDK and FKSFNYNVAIGVRQP that were screened from proteins excinuclease ABC subunit UvrC and 3-oxoacyl-ACP reductase FabG, respectively. This method opens novel ways to determine epitope-based peptide vaccines against different pathogenic organisms.

17.
BioTechnologia (Pozn) ; 103(1): 53-70, 2022.
Article En | MEDLINE | ID: mdl-36605381

Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected 235.6 million people worldwide. In the present study, RNA-dependent RNA polymerase (RdRp) (PDB Id: 6M71) of SARS-CoV-2, an essential enzyme needed for subgenomic replication and amplification of RNA, was selected. Similar to other RdRps, it is a conserved protein and a popular target for antiviral drug therapy. Based on a computational approach, potential RdRp inhibitors were identified. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) of selected molecules were determined using computation tools. The potential inhibitors were docked to the RdRp and later confirmed by Molecular Dynamics (MD) using the "Flare" module of Cresset software. Drummondin E and Flinderole B had higher drug similarity scores among the compounds selected in this study. Both these compounds are noncarcinogenic, nonirritant, nontumorigenic, and nonmutagenic. Molecular docking studies showed that both compounds can bind to RdRp. The best ligand interaction patterns were validated by MD using the "Flare" module. MD was performed for the period of 100 ns with the time step of 1 fs. The simulation results suggest that Thr-680, Arg-624, Lys-676, and Val-557 are key interacting partners in the Drummondin E-RdRp complex, while Asp-618, Asp-760, Asp-623, Arg-624, and Asp-761 are the interacting partners in the Flinderole B-RdRp complex. Based on the in silico drug-likeness score; ADMET properties; and molecular simulation result, we surmise that Flinderole B and Drummondin E could impede SARS-CoV-2 genome replication and transcription by targeting the RdRp protein.

18.
Article En | MEDLINE | ID: mdl-34900515

Orthohantavirus, a zoonotic virus responsible for causing human cardio-pulmonary disease, is proven to be a fatal disease. Due to the paucity of regimens to cure the disease and efficient management to eradicate this deadly virus, there is a constant need to expand in-silico approaches belonging to immunology domain to formulate best feasible peptide-based vaccine against it. In lieu of that, we have predicted and validated an epitope of nine-residue-long sequence "MIGLLSSRI". The predicted epitope has shown best interactions with HLA alleles of MHC Class II proteins, namely HLA DRB1_0101, DRB1_0401, DRB1_0405, DRB1_0701, DRB1_0901, DRB1_1302, and DRB1_1501. The structure of the epitope was modeled by deploying PEPFOLD 3.5 and verified by Ramachandran plot analysis. Molecular docking and simulation studies reveal that this epitope has satisfactory binding scores, ACE value and global energies for docked complexes along with selectable range of RMSD and RMSF values. Also, the predicted epitope "MIGLLSSRI" exhibits population coverage of more than 62% in world population and maximum of 70% in the United States of America. In this intensive study, we have used many tools like AllergenFP, NETMHCII 3.2, VaxiJen, ToxinPred, PEPFOLD 3.5, DINC, IEDB-Population coverage, MHCPred and JCat server. Most of these tools are based on modern innovative statistical algorithms like HMM, ANN, ML, etc. that help in better predictions of putative candidates for vaccine crafting. This innovative methodology is facile, cost-effective and time-efficient, which could facilitate designing of a vaccine against this virus.

19.
Int J Pept Res Ther ; 28(1): 15, 2022.
Article En | MEDLINE | ID: mdl-34873397

Prosopis cineraria commonly known as Druce are valuable herb that holds antibacterial role, antifungal properties. We identified different peptides from this plant by deploying CADD (Computer-aided-drug-designing) approaches, these peptide sequences are as follows seq1 (RHDEEEEKAKV),seq3(KSNSTVEISQNVQSVDSSKM),seq4(KQVAEMNKPAVGSKTSDANHDLKS),seq5(KTKSAGNDSIQSTKPVPSALTVDKA),seq6(RELEDSNIHHVAASVVLESKSSRT), and seq8(LYSKVELHPFGLHNLGNSCYANAVFSV), these peptides holds therapeutic properties as shows interaction with chitin, a major constituent of fungal cell wall. Molecular docking was conducted by using AutoDock-Vina tool and the results were found to be promising where all binding energies were found in the range of - 9.1 to - 7.5 kcal/mol, it indicates strong binding of peptide sequences with chitin molecule. Even the toxicity analysis supports the considered peptide sequences to hold therapeutic role against fungus with non-toxic effect on humans. These peptides were successfully predicted as important therapeutic agents of P. cinerariaseed that can initiate chitin breakdown, due to their possible strong interaction with fungal cell wall and it also suggests this medicinal plant holds the key for multiple fungal disease treatments. This study will open new research dimensions and integration of computational biology with microbial pathology that will assist scientific and medical community to develop rapid disease prevention strategies against fungal pathogenesis.

20.
J Genet Eng Biotechnol ; 19(1): 121, 2021 Aug 18.
Article En | MEDLINE | ID: mdl-34406518

BACKGROUND: Canine circovirus is a deadly pathogen of dogs and causes vasculitis and hemorrhagic enteritis. It causes lethal gastroenteritis in pigs, fox, and dogs. Canine circovirus genome contains two main (and opposite) transcription units which encode two open reading frames (ORFs), a replicase-associated protein (Rep) and the capsid (Cap) protein. The replicase protein and capsid protein consist of 303 amino acids and 270 amino acids respectively. Several immuno-informatics methods such as epitope screening, molecular docking, and molecular-dynamics simulations were used to craft peptide-based vaccine construct against canine circovirus. RESULTS: The vaccine construct was designed by joining the selected epitopes with adjuvants by suitable linker. The cloning and expression of the vaccine construct was also performed using in silico methods. Screening of epitopes was conducted by NetMHC server that uses ANN (Artificial neural networking) algorithm. These methods are fast and cost-effective for screening epitopes that can interact with dog leukocyte antigens (DLA) and initiate an immune response. Overall, 5 epitopes, YQHLPPFRF, YIRAKWINW, ALYRRLTLI, HLQGFVNLK, and GTMNFVARR, were selected and used to design a vaccine construct. The molecular docking and molecular dynamics simulation studies show that these epitopes can bind with DLA molecules with stability. The codon adaptation and in silico cloning studies show that the vaccine can be expressed by Escherichia coli K12 strain. CONCLUSION: The results suggest that the vaccine construct can be useful in preventing the dogs from canine circovirus infections. However, the results need further validation by performing other in vitro and in vivo experiments.

...