Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Cell Rep Med ; 5(4): 101503, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38593810

In monogenic autoinflammatory diseases, mutations in genes regulating innate immune responses often lead to uncontrolled activation of inflammasome pathways or the type I interferon (IFN-I) response. We describe a mechanism of autoinflammation potentially predisposing patients to life-threatening necrotizing soft tissue inflammation. Six unrelated families are identified in which affected members present with necrotizing fasciitis or severe soft tissue inflammations. Exome sequencing reveals truncating monoallelic loss-of-function variants of nuclear factor κ light-chain enhancer of activated B cells (NFKB1) in affected patients. In patients' macrophages and in NFKB1-variant-bearing THP-1 cells, activation increases both interleukin (IL)-1ß secretion and IFN-I signaling. Truncation of NF-κB1 impairs autophagy, accompanied by the accumulation of reactive oxygen species and reduced degradation of inflammasome receptor nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein 3 (NLRP3), and Toll/IL-1 receptor domain-containing adaptor protein inducing IFN-ß (TRIF), thus leading to combined excessive inflammasome and IFN-I activity. Many of the patients respond to anti-inflammatory treatment, and targeting IL-1ß and/or IFN-I signaling could represent a therapeutic approach for these patients.


Fasciitis, Necrotizing , Interferon Type I , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Immunity, Innate , Inflammation/metabolism , NF-kappa B p50 Subunit
2.
JID Innov ; 3(4): 100203, 2023 Jul.
Article En | MEDLINE | ID: mdl-37533579

Early-onset, persistent atopic dermatitis (AD) is proposed as a distinct subgroup that may have specific genotypic features. FLG gene loss-of-function variants are the best known genetic factors contributing to epidermal barrier impairment and eczema severity. In a cohort of 140 Finnish children with early-onset moderate-to-severe AD, we investigated the effect of coding variation in FLG and 13 other genes with epidermal barrier or immune function through the use of targeted amplicon sequencing and genotyping. A FLG loss-of-function variant (Arg501Ter, Ser761fs, Arg2447Ter, or Ser3247Ter) was identified in 20 of 140 patients showing higher transepidermal water loss values than patients without these variants. Total FLG loss-of-function variant frequency (7.14%) was significantly higher than in the general Finnish population (2.34%). When tested separately, only Arg2447Ter showed a significant association with AD (P = 0.003104). In addition, a modest association with moderate-to-severe pediatric AD was seen for rs12730241 and rs6587667 (FLG2:Gly137Glu). Loss-of-function variants, previously reported pathogenic variants, or statistically significant enrichment of nonsynonymous coding region variants were not found in the 13 candidate genes studied by amplicon sequencing. However, higher IgE and eosinophil counts were found in carriers of potentially pathogenic DOCK8 missense variants, suggesting that the role of DOCK8 variation in AD should be further investigated in larger cohorts.

3.
J Clin Immunol ; 43(5): 1007-1018, 2023 07.
Article En | MEDLINE | ID: mdl-36892687

Loss-of-function (LOF) mutations in NFKB1, coding for p105, may cause common variable immunodeficiency due to dysregulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κΒ) pathway. Monoallelic LOF variants of NFKB1 can predispose to uncontrolled inflammation including sterile necrotizing fasciitis or pyoderma gangrenosum. In this study, we explored the impact of a heterozygous NFKB1 c.C936T/p.R157X LOF variant on immunity in sterile fasciitis patients and their family members. The p50 or p105 protein levels were reduced in all variant carriers. Interleukin-1ß (IL-1ß) and interleukin-8 (IL-8) levels were elevated in vitro, potentially contributing to the very high neutrophil counts observed during fasciitis episodes. Phosphorylation of p65/RelA was reduced in p.R157X neutrophils suggesting defective activation of canonical NF-κB. Oxidative burst after NF-κB-independent phorbol 12-myristate 13-acetate (PMA) stimulation was similar in both p.R157X and control neutrophils. Comparable amounts of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex subunits were found in p.R157X and control neutrophils. However, a compromised oxidative burst was observed in p.R157X neutrophils following activation of NF-κB-dependent mechanisms following stimulation of toll-like receptor 2 (TLR2) and Dectin-1. Neutrophil extracellular trap formation was not affected by p.R157X. In summary, the NFKB1 c.C936T/p.R157X LOF variant has an impact on inflammation and neutrophil function and may play a role in the pathogenesis of sterile necrotizing fasciitis.


Fasciitis, Necrotizing , NF-kappa B , Humans , NF-kappa B/metabolism , Neutrophils/metabolism , Fasciitis, Necrotizing/genetics , Respiratory Burst , Inflammation/genetics , Inflammation/metabolism , NF-kappa B p50 Subunit/genetics
4.
Clin Immunol ; 246: 109181, 2023 01.
Article En | MEDLINE | ID: mdl-36356849

Nuclear factor κ light-chain enhancer of activated B cells (NF-κB) family of evolutionarily conserved transcription factors are involved in key cellular signaling pathways. Previously, hypogammaglobulinemia and common variable immunodeficiency (CVID)-like phenotypes have been associated with NFKB1 variants and loss-of-function NFKB1 variants have been reported as the most common monogenic cause for CVID among Europeans. Here, we describe a Finnish cohort of NFKB1 carriers consisting of 31 living subjects in six different families carrying five distinct heterozygous variants. In contrast to previous reports, the clinical penetrance was not complete even with advancing age and the prevalence of CVID/hypogammaglobulinemia was significantly lower, whereas (auto)inflammatory manifestations were more common (42% of the total cohort). At current stage of knowledge, routine genetic screening of asymptomatic individuals is not recommended, but counseling of potential adult carriers seems necessary.


Common Variable Immunodeficiency , Immunologic Deficiency Syndromes , NF-kappa B , Humans , Agammaglobulinemia , Common Variable Immunodeficiency/genetics , Follow-Up Studies , Immunologic Deficiency Syndromes/genetics , NF-kappa B/genetics , NF-kappa B p50 Subunit/genetics
5.
Sci Immunol ; 6(65): eabe3454, 2021 Nov 26.
Article En | MEDLINE | ID: mdl-34826260

The Ikaros family transcription factors regulate lymphocyte development. Loss-of-function variants in IKZF1 cause primary immunodeficiency, but Ikaros family members IKZF2 and IKZF3 have not yet been associated with immunodeficiency. Here, we describe a pedigree with a heterozygous truncating variant in IKZF2, encoding the transcriptional activator and repressor Helios, which is highly expressed in regulatory T cells and effector T cells, particularly of the CD8+ T cell lineage. Protein-protein interaction analysis revealed that the variant abolished heterodimerization of Helios with Ikaros and Aiolos and also prevented Helios binding to members of the Mi-2/NuRD chromatin remodeling complex. Patients carrying the IKZF2 variant presented with a combined immunodeficiency phenotype characterized by recurrent upper respiratory infections, thrush and mucosal ulcers, and chronic lymphadenopathy. With extensive immunophenotyping, functional assays, and transcriptional analysis, we show that reduced Helios expression was associated with chronic T cell activation and increased production of proinflammatory cytokines both in effector and regulatory T cells. Lymph node histology from patients indicated dysregulated germinal center reactions. Moreover, affected individuals displayed a profound reduction in circulating MAIT cell numbers. In summary, we show that this previously undescribed loss-of-function variant in Helios leads to an immunodeficiency with signs of immune overactivation.


Ikaros Transcription Factor/immunology , Mucosal-Associated Invariant T Cells/immunology , Adult , Aged , Female , Germinal Center/immunology , Humans , Ikaros Transcription Factor/blood , Ikaros Transcription Factor/genetics , Male , Middle Aged , Young Adult
6.
J Allergy Clin Immunol ; 148(2): 599-611, 2021 08.
Article En | MEDLINE | ID: mdl-33662367

BACKGROUND: Homozygous loss of DIAPH1 results in seizures, cortical blindness, and microcephaly syndrome (SCBMS). We studied 5 Finnish and 2 Omani patients with loss of DIAPH1 presenting with SCBMS, mitochondrial dysfunction, and immunodeficiency. OBJECTIVE: We sought to further characterize phenotypes and disease mechanisms associated with loss of DIAPH1. METHODS: Exome sequencing, genotyping and haplotype analysis, B- and T-cell phenotyping, in vitro lymphocyte stimulation assays, analyses of mitochondrial function, immunofluorescence staining for cytoskeletal proteins and mitochondria, and CRISPR-Cas9 DIAPH1 knockout in heathy donor PBMCs were used. RESULTS: Genetic analyses found all Finnish patients homozygous for a rare DIAPH1 splice-variant (NM_005219:c.684+1G>A) enriched in the Finnish population, and Omani patients homozygous for a previously described pathogenic DIAPH1 frameshift-variant (NM_005219:c.2769delT;p.F923fs). In addition to microcephaly, epilepsy, and cortical blindness characteristic to SCBMS, the patients presented with infection susceptibility due to defective lymphocyte maturation and 3 patients developed B-cell lymphoma. Patients' immunophenotype was characterized by poor lymphocyte activation and proliferation, defective B-cell maturation, and lack of naive T cells. CRISPR-Cas9 knockout of DIAPH1 in PBMCs from healthy donors replicated the T-cell activation defect. Patient-derived peripheral blood T cells exhibited impaired adhesion and inefficient microtubule-organizing center repositioning to the immunologic synapse. The clinical symptoms and laboratory tests also suggested mitochondrial dysfunction. Experiments with immortalized, patient-derived fibroblasts indicated that DIAPH1 affects the amount of complex IV of the mitochondrial respiratory chain. CONCLUSIONS: Our data demonstrate that individuals with SCBMS can have combined immune deficiency and implicate defective cytoskeletal organization and mitochondrial dysfunction in SCBMS pathogenesis.


Blindness, Cortical , Formins , Microcephaly , Mitochondrial Diseases , Seizures , Severe Combined Immunodeficiency , Adult , Blindness, Cortical/genetics , Blindness, Cortical/immunology , Blindness, Cortical/pathology , Child , Child, Preschool , Female , Finland , Formins/deficiency , Formins/immunology , Humans , Male , Microcephaly/genetics , Microcephaly/immunology , Microcephaly/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/immunology , Mitochondrial Diseases/pathology , Oman , Seizures/genetics , Seizures/immunology , Seizures/pathology , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , Severe Combined Immunodeficiency/pathology , Syndrome
7.
PLoS One ; 15(3): e0230819, 2020.
Article En | MEDLINE | ID: mdl-32231398

STAT3 mediates signalling downstream of cytokine and growth factor receptors where it acts as a transcription factor for its target genes, including oncogenes and cell survival regulating genes. STAT3 has been found to be persistently activated in many types of cancers, primarily through its tyrosine phosphorylation (Y705). Here, we show that constitutive STAT3 activation protects cells from cytotoxic drug responses of several drug classes. To find novel and potentially targetable STAT3 regulators we performed a kinase and phosphatase siRNA screen with cells expressing either a hyperactive STAT3 mutant or IL6-induced wild type STAT3. The screen identified cell division cycle 7-related protein kinase (CDC7), casein kinase 2, alpha 1 (CSNK2), discoidin domain-containing receptor 2 (DDR2), cyclin-dependent kinase 8 (CDK8), phosphatidylinositol 4-kinase 2-alpha (PI4KII), C-terminal Src kinase (CSK) and receptor-type tyrosine-protein phosphatase H (PTPRH) as potential STAT3 regulators. Using small molecule inhibitors targeting these proteins, we confirmed dose and time dependent inhibition of STAT3-mediated transcription, suggesting that inhibition of these kinases may provide strategies for dampening STAT3 activity in cancers.


Antineoplastic Agents/pharmacology , Computational Biology , STAT3 Transcription Factor/metabolism , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Phosphoric Monoester Hydrolases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , RNA, Small Interfering/genetics , STAT3 Transcription Factor/deficiency , STAT3 Transcription Factor/genetics , Time Factors
10.
J Allergy Clin Immunol ; 140(3): 782-796, 2017 Sep.
Article En | MEDLINE | ID: mdl-28115215

BACKGROUND: The nuclear factor κ light-chain enhancer of activated B cells (NF-κB) signaling pathway is a key regulator of immune responses. Accordingly, mutations in several NF-κB pathway genes cause immunodeficiency. OBJECTIVE: We sought to identify the cause of disease in 3 unrelated Finnish kindreds with variable symptoms of immunodeficiency and autoinflammation. METHODS: We applied genetic linkage analysis and next-generation sequencing and functional analyses of NFKB1 and its mutated alleles. RESULTS: In all affected subjects we detected novel heterozygous variants in NFKB1, encoding for p50/p105. Symptoms in variant carriers differed depending on the mutation. Patients harboring a p.I553M variant presented with antibody deficiency, infection susceptibility, and multiorgan autoimmunity. Patients with a p.H67R substitution had antibody deficiency and experienced autoinflammatory episodes, including aphthae, gastrointestinal disease, febrile attacks, and small-vessel vasculitis characteristic of Behçet disease. Patients with a p.R157X stop-gain experienced hyperinflammatory responses to surgery and showed enhanced inflammasome activation. In functional analyses the p.R157X variant caused proteasome-dependent degradation of both the truncated and wild-type proteins, leading to a dramatic loss of p50/p105. The p.H67R variant reduced nuclear entry of p50 and showed decreased transcriptional activity in luciferase reporter assays. The p.I553M mutation in turn showed no change in p50 function but exhibited reduced p105 phosphorylation and stability. Affinity purification mass spectrometry also demonstrated that both missense variants led to altered protein-protein interactions. CONCLUSION: Our findings broaden the scope of phenotypes caused by mutations in NFKB1 and suggest that a subset of autoinflammatory diseases, such as Behçet disease, can be caused by rare monogenic variants in genes of the NF-κB pathway.


Autoimmune Diseases/genetics , Immunologic Deficiency Syndromes/genetics , NF-kappa B/genetics , Adult , Aged , Cell Line , Child , Female , Heterozygote , Humans , Inflammation/genetics , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Mutation , Phenotype
11.
Eur J Hum Genet ; 24(10): 1473-8, 2016 10.
Article En | MEDLINE | ID: mdl-27142677

Antibody class-switch recombination and somatic hypermutation critically depend on the function of activation-induced cytidine deaminase (AID). Rare variants in its gene AICDA have been reported to cause autosomal recessive AID deficiency (autosomal recessive hyper-IgM syndrome type 2 (HIGM2)). Exome sequencing of a multicase Finnish family with an HIGM2 phenotype identified a rare, homozygous, variant (c.416T>C, p.(Met139Thr)) in the AICDA gene, found to be significantly enriched in the Finnish population compared with other populations of European origin (38.56-fold, P<0.001). The population history of Finland, characterized by a restricted number of founders, isolation and several population bottlenecks, has caused enrichment of certain rare disease-causing variants and losses of others, as part of a phenomenon called the Finnish Disease Heritage. Accordingly, rare founder mutations cause the majority of observed Finnish cases in these mostly autosomal recessive disorders that consequently are more frequent in Finland than elsewhere. Screening of all currently known Finnish patients with an HIGM2 phenotype showed them to be homozygous for p.(Met139Thr). All the Finnish p.(Met139Thr) carriers with available data on their geographic descent originated from the eastern and northeastern parts of Finland. They were observed to share more of their genome identity by descent (IBD) than Finns in general (P<0.001), and they all carried a 207.5-kb ancestral haplotype containing the variant. In conclusion, the identified p.(Met139Thr) variant is significantly enriched in Finns and explains all thus far found AID deficiencies in Finland.


Cytidine Deaminase/genetics , Gene Frequency , Hyper-IgM Immunodeficiency Syndrome/genetics , Mutation , Pedigree , Adult , Child , Female , Finland , Founder Effect , Haplotypes , Heterozygote , Homozygote , Humans , Hyper-IgM Immunodeficiency Syndrome/diagnosis , Infant , Male
13.
Blood ; 125(4): 639-48, 2015 Jan 22.
Article En | MEDLINE | ID: mdl-25349174

The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of immunodysregulation polyendocrinopathy enteropathy X-linked-like syndrome. Here, we immunologically characterized 3 patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T, and p.K658N, respectively). The patients displayed multiorgan autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B-cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4(-)CD8(-)) T cells, and decreased natural killer, T helper 17, and regulatory T-cell numbers. Notably, the patient harboring the K392R mutation developed T-cell large granular lymphocytic leukemia at age 14 years. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.


Agammaglobulinemia , Autoimmune Diseases , Genetic Diseases, Inborn , Leukemia, Large Granular Lymphocytic , Mutation, Missense , Mycobacterium Infections , STAT3 Transcription Factor , Adolescent , Adult , Agammaglobulinemia/genetics , Agammaglobulinemia/immunology , Agammaglobulinemia/pathology , Amino Acid Substitution , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cell Differentiation/genetics , Cell Differentiation/immunology , Dendritic Cells/immunology , Dendritic Cells/pathology , Female , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/immunology , Genetic Diseases, Inborn/pathology , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Leukemia, Large Granular Lymphocytic/genetics , Leukemia, Large Granular Lymphocytic/immunology , Leukemia, Large Granular Lymphocytic/pathology , Mycobacterium Infections/genetics , Mycobacterium Infections/immunology , Mycobacterium Infections/pathology , Protein Structure, Tertiary , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Th17 Cells/immunology , Th17 Cells/pathology
14.
PLoS One ; 7(5): e37153, 2012.
Article En | MEDLINE | ID: mdl-22606343

Drosophila is a well-established model organism for studying innate immunity because of its high resistance against microbial infections and lack of adaptive immunity. In addition, the immune signaling cascades found in Drosophila are evolutionarily conserved. Upon infection, activation of the immune signaling pathways, Toll and Imd, leads to the expression of multiple immune response genes, such as the antimicrobial peptides (AMPs). Previously, we identified an uncharacterized gene edin among the genes, which were strongly induced upon stimulation with Escherichia coli in Drosophila S2 cells. Edin has been associated with resistance against Listeria monocytogenes, but its role in Drosophila immunity remains elusive. In this study, we examined the role of Edin in the immune response of Drosophila both in vitro and in vivo. We report that edin expression is dependent on the Imd-pathway NF-κB transcription factor Relish and that it is expressed upon infection both in vitro and in vivo. Edin encodes a pro-protein, which is further processed in S2 cells. In our experiments, Edin did not bind microbes, nor did it possess antimicrobial activity to tested microbial strains in vitro or in vivo. Furthermore, edin RNAi did not significantly affect the expression of AMPs in vitro or in vivo. However, edin RNAi flies showed modestly impaired resistance to E. faecalis infection. We conclude that Edin has no potent antimicrobial properties but it appears to be important for E. faecalis infection via an uncharacterized mechanism. Further studies are still required to elucidate the exact role of Edin in the Drosophila immune response.


Drosophila Proteins/genetics , Drosophila Proteins/immunology , Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , Amino Acid Sequence , Animals , Animals, Genetically Modified , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/immunology , Base Sequence , Cell Line , DNA Primers/genetics , Drosophila Proteins/antagonists & inhibitors , Drosophila melanogaster/microbiology , Genes, Insect , Gram-Negative Bacterial Infections/genetics , Gram-Negative Bacterial Infections/immunology , Immunity, Innate , Molecular Sequence Data , RNA Interference , Sequence Homology, Amino Acid , Signal Transduction , Species Specificity , Transcription Factors/genetics , Transcription Factors/immunology
15.
FASEB J ; 26(3): 1239-50, 2012 Mar.
Article En | MEDLINE | ID: mdl-22159038

The JAK/STAT pathway is essential for organogenesis, innate immunity, and stress responses in Drosophila melanogaster. The JAK/STAT pathway and its associated regulators have been highly conserved in evolution from flies to humans. We have used a genome-wide RNAi screen in Drosophila S2 cells to identify regulators of the JAK/STAT pathway, and here we report the characterization of Not4 as a positive regulator of the JAK/STAT pathway. Overexpression of Not4 enhanced Stat92E-mediated gene responses in vitro and in vivo in Drosophila. Specifically, Not4 increased Stat92E-mediated reporter gene activation in S2 cells; and in flies, Not4 overexpression resulted in an 8-fold increase in Turandot M (TotM) and in a 4-fold increase in Turandot A (TotA) stress gene activation when compared to wild-type flies. Drosophila Not4 is structurally related to human CNOT4, which was found to regulate interferon-γ- and interleukin-4-induced STAT-mediated gene responses in human HeLa cells. Not4 was found to coimmunoprecipitate with Stat92E but not to affect tyrosine phosphorylation of Stat92E in Drosophila cells. However, Not4 is required for binding of Stat92E to its DNA recognition sequence in the TotM gene promoter. In summary, Not4/CNOT4 is a novel positive regulator of the JAK/STAT pathway in Drosophila and in humans.


Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gene Expression/genetics , Heat-Shock Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Transcription Factors/genetics , Animals , Cell Line , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Gene Expression/drug effects , HeLa Cells , Heat-Shock Proteins/metabolism , Humans , Immunoblotting , Immunoprecipitation , Interferon-gamma/pharmacology , Interleukin-4/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Janus Kinases/genetics , Janus Kinases/metabolism , Phosphorylation , Protein Binding , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction/genetics , Transcription Factors/metabolism , Tyrosine/genetics , Tyrosine/metabolism
16.
J Immunol ; 184(11): 6188-98, 2010 Jun 01.
Article En | MEDLINE | ID: mdl-20421637

Because NF-kappaB signaling pathways are highly conserved in evolution, the fruit fly Drosophila melanogaster provides a good model to study these cascades. We carried out an RNA interference (RNAi)-based genome-wide in vitro reporter assay screen in Drosophila for components of NF-kappaB pathways. We analyzed 16,025 dsRNA-treatments and identified 10 novel NF-kappaB regulators. Of these, nine dsRNA-treatments affect primarily the Toll pathway. G protein-coupled receptor kinase (Gprk)2, CG15737/Toll pathway activation mediating protein, and u-shaped were required for normal Drosomycin response in vivo. Interaction studies revealed that Gprk2 interacts with the Drosophila IkappaB homolog Cactus, but is not required in Cactus degradation, indicating a novel mechanism for NF-kappaB regulation. Morpholino silencing of the zebrafish ortholog of Gprk2 in fish embryos caused impaired cytokine expression after Escherichia coli infection, indicating a conserved role in NF-kappaB signaling. Moreover, small interfering RNA silencing of the human ortholog GRK5 in HeLa cells impaired NF-kappaB reporter activity. Gprk2 RNAi flies are susceptible to infection with Enterococcus faecalis and Gprk2 RNAi rescues Toll(10b)-induced blood cell activation in Drosophila larvae in vivo. We conclude that Gprk2/GRK5 has an evolutionarily conserved role in regulating NF-kappaB signaling.


Drosophila Proteins/immunology , G-Protein-Coupled Receptor Kinase 2/immunology , G-Protein-Coupled Receptor Kinase 5/metabolism , Immunity, Innate , NF-kappa B/immunology , Signal Transduction/physiology , Animals , Blotting, Western , Drosophila , Drosophila Proteins/metabolism , G-Protein-Coupled Receptor Kinase 2/metabolism , G-Protein-Coupled Receptor Kinase 5/immunology , Gram-Negative Chemolithotrophic Bacteria/immunology , Gram-Negative Chemolithotrophic Bacteria/metabolism , Humans , Immunohistochemistry , Immunoprecipitation , NF-kappa B/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Zebrafish
...