Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acad Radiol ; 30(12): 2913-2920, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37164818

RESUMEN

OBJECTIVE: To assess the effectiveness of low contrast volume (LCV) chest CT performed with multiple contrast agents on multivendor CT with varying scanning techniques. METHODS: The study included 361 patients (65 ± 15 years; M: F 173:188) who underwent LCV chest CT on one of the six 64-256 detector-row CT scanners using single-energy (SECT) or dual-energy (DECT) modes. All patients were scanned with either a fixed-LCV (LCVf, n = 103) or weight-based LCV (LCVw, n = 258) protocol. Two thoracic radiologists independently assessed all LCV CT and patients' prior standard contrast volume (SCV, n = 263) chest CT for optimality of contrast enhancement in thoracic vasculature, cardiac chambers, and in pleuro-parenchymal and mediastinal abnormalities. CT attenuations were recorded in the main pulmonary trunk, ascending, and descending thoracic aorta. To assess the interobserver agreement, pulmonary arterial enhancement was divided into two groups: optimal or suboptimal. RESULTS: There was no significant difference among patients' BMI (p = 0.883) in the three groups. DECT had a significantly higher aortic arterial enhancement (250 ± 99HU vs 228 ± 76 HU for SECT, p < 0.001). Optimal enhancement was present in 558 of 624 chest CT (89.4%), whereas 66 of 624 chest CT with suboptimal enhancement was noted in 48 of 258 LCVw (18.6%) and 14 of 103 LCVf (13.6%). Most patients with suboptimal enhancement with LCVw injection protocol were overweight/obese (30/48; 62.5%), (p < 0.001). CONCLUSION: LCV chest CT can be performed across complex multivendor, multicontrast media, multiscanner, and multiprotocol CT practices. However, LCV chest CT examinations can result in suboptimal contrast enhancement in patients with larger body habitus.


Asunto(s)
Medios de Contraste , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Tórax , Aorta , Arteria Pulmonar
2.
Acad Radiol ; 30(12): 2921-2930, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37019698

RESUMEN

RATIONALE AND OBJECTIVES: Suboptimal chest radiographs (CXR) can limit interpretation of critical findings. Radiologist-trained AI models were evaluated for differentiating suboptimal(sCXR) and optimal(oCXR) chest radiographs. MATERIALS AND METHODS: Our IRB-approved study included 3278 CXRs from adult patients (mean age 55 ± 20 years) identified from a retrospective search of CXR in radiology reports from 5 sites. A chest radiologist reviewed all CXRs for the cause of suboptimality. The de-identified CXRs were uploaded into an AI server application for training and testing 5 AI models. The training set consisted of 2202 CXRs (n = 807 oCXR; n = 1395 sCXR) while 1076 CXRs (n = 729 sCXR; n = 347 oCXR) were used for testing. Data were analyzed with the Area under the curve (AUC) for the model's ability to classify oCXR and sCXR correctly. RESULTS: For the two-class classification into sCXR or oCXR from all sites, for CXR with missing anatomy, AI had sensitivity, specificity, accuracy, and AUC of 78%, 95%, 91%, 0.87(95% CI 0.82-0.92), respectively. AI identified obscured thoracic anatomy with 91% sensitivity, 97% specificity, 95% accuracy, and 0.94 AUC (95% CI 0.90-0.97). Inadequate exposure with 90% sensitivity, 93% specificity, 92% accuracy, and AUC of 0.91 (95% CI 0.88-0.95). The presence of low lung volume was identified with 96% sensitivity, 92% specificity, 93% accuracy, and 0.94 AUC (95% CI 0.92-0.96). The sensitivity, specificity, accuracy, and AUC of AI in identifying patient rotation were 92%, 96%, 95%, and 0.94 (95% CI 0.91-0.98), respectively. CONCLUSION: The radiologist-trained AI models can accurately classify optimal and suboptimal CXRs. Such AI models at the front end of radiographic equipment can enable radiographers to repeat sCXRs when necessary.


Asunto(s)
Pulmón , Radiografía Torácica , Adulto , Humanos , Persona de Mediana Edad , Anciano , Pulmón/diagnóstico por imagen , Estudios Retrospectivos , Radiografía , Radiólogos
3.
Diagnostics (Basel) ; 13(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36832266

RESUMEN

Purpose: Motion-impaired CT images can result in limited or suboptimal diagnostic interpretation (with missed or miscalled lesions) and patient recall. We trained and tested an artificial intelligence (AI) model for identifying substantial motion artifacts on CT pulmonary angiography (CTPA) that have a negative impact on diagnostic interpretation. Methods: With IRB approval and HIPAA compliance, we queried our multicenter radiology report database (mPower, Nuance) for CTPA reports between July 2015 and March 2022 for the following terms: "motion artifacts", "respiratory motion", "technically inadequate", and "suboptimal" or "limited exam". All CTPA reports were from two quaternary (Site A, n = 335; B, n = 259) and a community (C, n = 199) healthcare sites. A thoracic radiologist reviewed CT images of all positive hits for motion artifacts (present or absent) and their severity (no diagnostic effect or major diagnostic impairment). Coronal multiplanar images from 793 CTPA exams were de-identified and exported offline into an AI model building prototype (Cognex Vision Pro, Cognex Corporation) to train an AI model to perform two-class classification ("motion" or "no motion") with data from the three sites (70% training dataset, n = 554; 30% validation dataset, n = 239). Separately, data from Site A and Site C were used for training and validating; testing was performed on the Site B CTPA exams. A five-fold repeated cross-validation was performed to evaluate the model performance with accuracy and receiver operating characteristics analysis (ROC). Results: Among the CTPA images from 793 patients (mean age 63 ± 17 years; 391 males, 402 females), 372 had no motion artifacts, and 421 had substantial motion artifacts. The statistics for the average performance of the AI model after five-fold repeated cross-validation for the two-class classification included 94% sensitivity, 91% specificity, 93% accuracy, and 0.93 area under the ROC curve (AUC: 95% CI 0.89-0.97). Conclusion: The AI model used in this study can successfully identify CTPA exams with diagnostic interpretation limiting motion artifacts in multicenter training and test datasets. Clinical relevance: The AI model used in the study can help alert technologists about the presence of substantial motion artifacts on CTPA, where a repeat image acquisition can help salvage diagnostic information.

4.
Diagnostics (Basel) ; 13(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36766516

RESUMEN

Chest radiographs (CXR) are the most performed imaging tests and rank high among the radiographic exams with suboptimal quality and high rejection rates. Suboptimal CXRs can cause delays in patient care and pitfalls in radiographic interpretation, given their ubiquitous use in the diagnosis and management of acute and chronic ailments. Suboptimal CXRs can also compound and lead to high inter-radiologist variations in CXR interpretation. While advances in radiography with transitions to computerized and digital radiography have reduced the prevalence of suboptimal exams, the problem persists. Advances in machine learning and artificial intelligence (AI), particularly in the radiographic acquisition, triage, and interpretation of CXRs, could offer a plausible solution for suboptimal CXRs. We review the literature on suboptimal CXRs and the potential use of AI to help reduce the prevalence of suboptimal CXRs.

5.
Jpn J Radiol ; 41(2): 194-200, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36331701

RESUMEN

PURPOSE: Knowledge of kidney stone composition can help in patient management; urine composition analysis and dual-energy CT are frequently used to assess stone type. We assessed if threshold-based stone segmentation and radiomics can determine the composition of kidney stones from single-energy, non-contrast abdomen-pelvis CT. METHODS: With IRB approval, we identified 218 consecutive patients (mean age 64 ± 13 years; male:female 138:80) with the presence of kidney stones on non-contrast, abdomen-pelvis CT and surgical or biochemical proof of their stone composition. CT examinations were performed on one of the seven multidetector-row scanners from four vendors (GE, Philips, Siemens, Toshiba). Deidentified CT images were processed with a radiomics prototype (Frontier, Siemens Healthineers) to segment the entire kidney volumes with an AI-based organ segmentation tool. We applied a threshold of 130 HU to isolate stones in the segmented kidneys and to estimate radiomics over the segmented stone volume. A coinvestigator verified kidney stone segmentation and adjusted the volume of interest to include the entire stone volume when necessary. We applied multiple logistic regression tests with precision recall plots to obtain area under the curve (AUC) using a built-in R statistical program. RESULTS: The threshold-based stone segmentation successfully isolated kidney stones (uric acid: n = 102 patients, calcium oxalate/phosphate: n = 116 patients) in all patients. Radiomics differentiated between calcium and uric acid stones with an AUC of 0.78 (p < 0.01, 95% CI 0.73-0.83), 0.79 sensitivity, and 0.90 specificity regardless of CT vendors (GE CT: AUC = 0.82, p < 0.01, 95% CI 0.740-0896; Siemens CT: AUC = 0.77, 95% CI 0.700-0.846, p < 0.01). CONCLUSION: Automated threshold-based stone segmentation and radiomics can differentiate between calcium oxalate/phosphate and urate stones from non-contrast, single-energy abdomen CT.


Asunto(s)
Oxalato de Calcio , Cálculos Renales , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Oxalato de Calcio/análisis , Ácido Úrico/análisis , Cálculos Renales/diagnóstico por imagen , Cálculos Renales/química , Tomografía Computarizada por Rayos X/métodos , Oxalatos , Fosfatos
6.
Diagnostics (Basel) ; 12(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36292071

RESUMEN

BACKGROUND: Missed findings in chest X-ray interpretation are common and can have serious consequences. METHODS: Our study included 2407 chest radiographs (CXRs) acquired at three Indian and five US sites. To identify CXRs reported as normal, we used a proprietary radiology report search engine based on natural language processing (mPower, Nuance). Two thoracic radiologists reviewed all CXRs and recorded the presence and clinical significance of abnormal findings on a 5-point scale (1-not important; 5-critical importance). All CXRs were processed with the AI model (Qure.ai) and outputs were recorded for the presence of findings. Data were analyzed to obtain area under the ROC curve (AUC). RESULTS: Of 410 CXRs (410/2407, 18.9%) with unreported/missed findings, 312 (312/410, 76.1%) findings were clinically important: pulmonary nodules (n = 157), consolidation (60), linear opacities (37), mediastinal widening (21), hilar enlargement (17), pleural effusions (11), rib fractures (6) and pneumothoraces (3). AI detected 69 missed findings (69/131, 53%) with an AUC of up to 0.935. The AI model was generalizable across different sites, geographic locations, patient genders and age groups. CONCLUSION: A substantial number of important CXR findings are missed; the AI model can help to identify and reduce the frequency of important missed findings in a generalizable manner.

7.
Diagnostics (Basel) ; 12(9)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36140488

RESUMEN

Purpose: We assessed whether a CXR AI algorithm was able to detect missed or mislabeled chest radiograph (CXR) findings in radiology reports. Methods: We queried a multi-institutional radiology reports search database of 13 million reports to identify all CXR reports with addendums from 1999-2021. Of the 3469 CXR reports with an addendum, a thoracic radiologist excluded reports where addenda were created for typographic errors, wrong report template, missing sections, or uninterpreted signoffs. The remaining reports contained addenda (279 patients) with errors related to side-discrepancies or missed findings such as pulmonary nodules, consolidation, pleural effusions, pneumothorax, and rib fractures. All CXRs were processed with an AI algorithm. Descriptive statistics were performed to determine the sensitivity, specificity, and accuracy of the AI in detecting missed or mislabeled findings. Results: The AI had high sensitivity (96%), specificity (100%), and accuracy (96%) for detecting all missed and mislabeled CXR findings. The corresponding finding-specific statistics for the AI were nodules (96%, 100%, 96%), pneumothorax (84%, 100%, 85%), pleural effusion (100%, 17%, 67%), consolidation (98%, 100%, 98%), and rib fractures (87%, 100%, 94%). Conclusions: The CXR AI could accurately detect mislabeled and missed findings. Clinical Relevance: The CXR AI can reduce the frequency of errors in detection and side-labeling of radiographic findings.

8.
JAMA Netw Open ; 5(8): e2229289, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36044215

RESUMEN

Importance: The efficient and accurate interpretation of radiologic images is paramount. Objective: To evaluate whether a deep learning-based artificial intelligence (AI) engine used concurrently can improve reader performance and efficiency in interpreting chest radiograph abnormalities. Design, Setting, and Participants: This multicenter cohort study was conducted from April to November 2021 and involved radiologists, including attending radiologists, thoracic radiology fellows, and residents, who independently participated in 2 observer performance test sessions. The sessions included a reading session with AI and a session without AI, in a randomized crossover manner with a 4-week washout period in between. The AI produced a heat map and the image-level probability of the presence of the referrable lesion. The data used were collected at 2 quaternary academic hospitals in Boston, Massachusetts: Beth Israel Deaconess Medical Center (The Medical Information Mart for Intensive Care Chest X-Ray [MIMIC-CXR]) and Massachusetts General Hospital (MGH). Main Outcomes and Measures: The ground truths for the labels were created via consensual reading by 2 thoracic radiologists. Each reader documented their findings in a customized report template, in which the 4 target chest radiograph findings and the reader confidence of the presence of each finding was recorded. The time taken for reporting each chest radiograph was also recorded. Sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) were calculated for each target finding. Results: A total of 6 radiologists (2 attending radiologists, 2 thoracic radiology fellows, and 2 residents) participated in the study. The study involved a total of 497 frontal chest radiographs-247 from the MIMIC-CXR data set (demographic data for patients were not available) and 250 chest radiographs from MGH (mean [SD] age, 63 [16] years; 133 men [53.2%])-from adult patients with and without 4 target findings (pneumonia, nodule, pneumothorax, and pleural effusion). The target findings were found in 351 of 497 chest radiographs. The AI was associated with higher sensitivity for all findings compared with the readers (nodule, 0.816 [95% CI, 0.732-0.882] vs 0.567 [95% CI, 0.524-0.611]; pneumonia, 0.887 [95% CI, 0.834-0.928] vs 0.673 [95% CI, 0.632-0.714]; pleural effusion, 0.872 [95% CI, 0.808-0.921] vs 0.889 [95% CI, 0.862-0.917]; pneumothorax, 0.988 [95% CI, 0.932-1.000] vs 0.792 [95% CI, 0.756-0.827]). AI-aided interpretation was associated with significantly improved reader sensitivities for all target findings, without negative impacts on the specificity. Overall, the AUROCs of readers improved for all 4 target findings, with significant improvements in detection of pneumothorax and nodule. The reporting time with AI was 10% lower than without AI (40.8 vs 36.9 seconds; difference, 3.9 seconds; 95% CI, 2.9-5.2 seconds; P < .001). Conclusions and Relevance: These findings suggest that AI-aided interpretation was associated with improved reader performance and efficiency for identifying major thoracic findings on a chest radiograph.


Asunto(s)
Aprendizaje Profundo , Derrame Pleural , Neumonía , Neumotórax , Adulto , Inteligencia Artificial , Estudios de Cohortes , Humanos , Masculino , Persona de Mediana Edad , Neumonía/diagnóstico por imagen
9.
Diagnostics (Basel) ; 12(8)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36010194

RESUMEN

(1) Background: Optimal anatomic coverage is important for radiation-dose optimization. We trained and tested (R2.2.4) two (R3-2) deep learning (DL) algorithms on a machine vision tool library platform (Cognex Vision Pro Deep Learning software) to recognize anatomic landmarks and classify chest CT as those with optimum, under-scanned, or over-scanned scan length. (2) Methods: To test our hypothesis, we performed a study with 428 consecutive chest CT examinations (mean age 70 ± 14 years; male:female 190:238) performed at one of the four hospitals. CT examinations from two hospitals were used to train the DL classification algorithms to identify lung apices and bases. The developed algorithms were then tested on the data from the remaining two hospitals. For each CT, we recorded the scan lengths above and below the lung apices and bases. Model performance was assessed with receiver operating characteristics (ROC) analysis. (3) Results: The two DL models for lung apex and bases had high sensitivity, specificity, accuracy, and areas under the curve (AUC) for identifying under-scanning (100%, 99%, 99%, and 0.999 (95% CI 0.996-1.000)) and over-scanning (99%, 99%, 99%, and 0.998 (95%CI 0.992-1.000)). (4) Conclusions: Our DL models can accurately identify markers for missing anatomic coverage and over-scanning in chest CTs.

10.
Acad Radiol ; 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34836775

RESUMEN

Concerns over need for CT radiation dose optimization and reduction led to improved scanner efficiency and introduction of several reconstruction techniques and image processing-based software. The latest technologies use artificial intelligence (AI) for CT dose optimization and image quality improvement. While CT dose optimization has and can benefit from AI, variations in scanner technologies, reconstruction methods, and scan protocols can lead to substantial variations in radiation doses and image quality across and within different scanners. These variations in turn can influence performance of AI algorithms being deployed for tasks such as detection, segmentation, characterization, and quantification. We review the complex relationship between AI and CT radiation dose.

11.
Complement Ther Med ; 42: 429-437, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30670279

RESUMEN

INTRODUCTION: It is believed that tubulointerstitial inflammation plays a role in the formation of renal scarring secondary to acute pyelonephritis (APN). Vitamin A is an anti-inflammatory agent that is involved in the re-epithelialization of damaged mucosal surfaces. OBJECTIVE: The aim of this study was to evaluate the efficacy of vitamin A supplementation in combination with antibiotics for improving urinary tract infections (UTIs) symptoms and preventing renal scarring in girls with APN. STUDY DESIGN: This randomized, double-blind, placebo-controlled clinical trial was conducted on 90 girls aged 2 to 12 years old between 2015 and 2017. Patients with UTIs and first episode of APN diagnosed based on 99 mTc-DMSA scintigraphy (uptake defect) were assessed for eligibility. Patients were randomly divided into two groups that either received 10 days of oral vitamin A (intervention group) or 10 days of placebo (control group) in addition to antibiotics during the acute phase of infection. The clinical response was considered as the primary outcome [duration (positive days) of UTI symptoms during trial treatment period] and secondary outcomes (no change, improving and or worsening of 99 mTc-DMSA scan results 6 months after treatment from baseline). P < 0.05 was considered to be statistically significant. RESULTS: Seventy-four patients (vitamin A group: 36 patients, placebo: 38 patients) were included in the analysis. The mean age was 5.25 ± 1 year old. Three patients (7.89%) in the placebo group and 2 patients (5.55%) in the vitamin A group had vesicoureteral reflux (VUR) (p = 0.114). Duration of fever (vitamin A group: 1.8 days, placebo: 3.1 days, p = 0.0026), urinary frequency (1.3 days vs. 2.8 days, p = 0.003) and poor feeding (2.3 days vs. 4.2 days, p = 0.005) were significantly lower in the vitamin A group. Following the second 99 mTc-DMSA scan, worsening of lesions was observed among 8 (22.2%) and 17 (44.7%) patients in the vitamin A and placebo groups, respectively (p = 0.003). 63.8% (23 patients) of the vitamin A group and 21% (8 patients) of placebo group showed lesion improving in the photopenic region. (P < 0.0001) There was no evidence of vitamin A intolerance. DISCUSSION: Our results show the efficacy of vitamin A supplementation on reducing renal scarring secondary to APN and on fever, urinary frequency and poor feeding duration in girls with APN. CONCLUSION: Vitamin A supplementation is effective for improving the clinical symptoms of UTI and reducing renal injury and scarring following APN in girls with first APN. However, larger randomized clinical trials (RCTs) with longer follow up are needed to confirm these effects.


Asunto(s)
Cicatriz/prevención & control , Suplementos Dietéticos , Riñón/efectos de los fármacos , Pielonefritis/tratamiento farmacológico , Infecciones Urinarias/tratamiento farmacológico , Vitamina A/uso terapéutico , Vitaminas/uso terapéutico , Enfermedad Aguda , Niño , Preescolar , Cicatriz/etiología , Método Doble Ciego , Conducta Alimentaria/efectos de los fármacos , Femenino , Fiebre/prevención & control , Humanos , Lactante , Riñón/patología , Pielonefritis/complicaciones , Resultado del Tratamiento , Infecciones Urinarias/complicaciones , Micción/efectos de los fármacos , Vitamina A/farmacología , Vitaminas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...