Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
J Phys Chem A ; 127(46): 9705-9716, 2023 Nov 23.
Article En | MEDLINE | ID: mdl-37939705

Solid-state photoreactions are generally controlled by the rigid and ordered nature of crystals. Herein, the solution and solid-state photoreactivities of carbonylbis(4,1-phenylene)dicarbonazidate (1) were investigated to elucidate the solid-state reaction mechanism. Irradiation of 1 in methanol yielded primarily the corresponding amine, whereas irradiation in the solid state gave a mixture of photoproducts. Laser flash photolysis in methanol showed the formation of the triplet ketone (TK) of 1 (τ ∼ 99 ns), which decayed to triplet nitrene 31N (τ ∼ 464 ns), as assigned by comparison to its calculated spectrum. Laser flash photolysis of a nanocrystalline suspension and diffuse reflectance laser flash photolysis also revealed the formation of TK of 1 (τ ∼ 106 ns) and 31N (τ ∼ 806 ns). Electron spin resonance spectroscopy and phosphorescence measurements further verified the formation of 31N and the TK of 1, respectively. In methanol, 31N decays by H atom abstraction. However, in the solid state, 31N is sufficiently long lived to thermally populate its singlet configuration (11N). Insertion of 11N into the phenyl ring to produce oxazolone competes with 31N cleavage to form a radical pair. Notably, 1 did not exhibit photodynamic behavior, likely because the photoreaction occurs only on the crystal surfaces.

...