Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 59
1.
ACS Nano ; 18(21): 13551-13559, 2024 May 28.
Article En | MEDLINE | ID: mdl-38757371

π-Conjugated molecules are viewed as fundamental components in forthcoming molecular nanoelectronics in which semiconducting functional units are linked to each other via metallic molecular wires. However, it is still challenging to construct such block cooligomers on the surface. Here, we present a synthesis of [18]-polyene-linked Zn-porphyrin cooligomers via a two-step reaction of the alkyl groups on Cu(111) and Cu(110). Nonyl groups (-C9H19) substituted at the 5,15-meso positions of Zn-porphyrin were first transformed to alkenyl groups (-C9H10) by dehydrogenation. Subsequently, homocoupling of the terminal -CH2 groups resulted in the formation of extended [18]-polyene-linked porphyrin cooligomers. The structures of the products at each reaction step were investigated by bond-resolved scanning tunneling microscopy at low temperatures. A combination of angle-resolved photoemission spectroscopy and density functional theory calculations revealed the metallic property of the all trans [18]-polyene linker on Cu(110). This finding may provide an approach to fabricate complex nanocarbon structures on the surface.

2.
Angew Chem Int Ed Engl ; 63(18): e202401027, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38415373

The incorporation of Si atoms into organic compounds significantly increases a variety of functionality, facilitating further applications. Recently, on-surface synthesis was introduced into organosilicon chemistry as 1,4-disilabenzene bridged nanostructures were obtained via coupling between silicon atoms and brominated phenyl groups at the ortho position on Au(111). Here, we demonstrate a high generality of this strategy via syntheses of silole derivatives and nanoribbon structures with eight-membered sila-cyclic rings from dibrominated molecules at the bay and peri positions on Au(111), respectively. Their structures and electronic properties were investigated by a combination of scanning tunneling microscopy/spectroscopy and density functional theory calculations. This work demonstrates a great potential to deal with heavy group 14 elements in on-surface silicon chemistry.

3.
ACS Nano ; 17(23): 24355-24362, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-38047624

A metal-metal bond between coordination complexes has the nature of a covalent bond in hydrocarbons. While bimetallic and trimetallic compounds usually have three-dimensional structures in solution, the high directionality and robustness of the bond can be applied for on-surface syntheses. Here, we present a systematic formation of complex organometallic oligomers on Cu(111) through sequential ring opening of 11,11,12,12-tetraphenyl-1,4,5,8-tetraazaanthraquinodimethane and bonding of phenanthroline derivatives by multiple Cu atoms. A detailed characterization with a combination of scanning tunneling microscopy and density functional theory calculations revealed the role of the Cu adatoms in both enantiomers of the chiral oligomers. Furthermore, we found sufficient strength of the bonds against sliding friction by manipulating the oligomers up to a hexamer. This finding may help to increase the variety of organometallic nanostructures on surfaces.

4.
Nat Commun ; 14(1): 7741, 2023 Nov 25.
Article En | MEDLINE | ID: mdl-38007486

Synthesis of one-dimensional molecular arrays with tailored stereoisomers is challenging yet has great potential for application in molecular opto-, electronic- and magnetic-devices, where the local array structure plays a decisive role in the functional properties. Here, we demonstrate the construction and characterization of dehydroazulene isomer and diradical units in three-dimensional organometallic compounds on Ag(111) with a combination of low-temperature scanning tunneling microscopy and density functional theory calculations. Tip-induced voltage pulses firstly result in the formation of a diradical species via successive homolytic fission of two C-Br bonds in the naphthyl groups, which are subsequently transformed into chiral dehydroazulene moieties. The delicate balance of the reaction rates among the diradical and two stereoisomers, arising from an in-line configuration of tip and molecular unit, allows directional azulene-to-azulene and azulene-to-diradical local probe structural isomerization in a controlled manner. Furthermore, our theoretical calculations suggest that the diradical moiety hosts an open-shell singlet with antiferromagnetic coupling between the unpaired electrons, which can undergo an inelastic spin transition of 91 meV to the ferromagnetically coupled triplet state.

5.
Commun Chem ; 6(1): 228, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37863965

On-surface synthesis is of importance to fabricate low dimensional carbon-based nanomaterials with atomic precision. Here, we synthesize nitrogen-doped nanographene with an [18]annulene pore and its dimer through sequential reactions of debromination, aryl-aryl coupling, cyclodehydrogenation and C-N coupling on Ag(111) from 3,12-dibromo-7,8-diaza[5]helicene. The inner structures of the products were characterized with scanning tunneling microscopy with a CO terminated tip at low temperature. Furthermore, the first four unoccupied electronic states of the nanographene were investigated with a combination of scanning tunneling spectroscopy and theoretical calculations. Except for the LUMO + 2 state observed at +1.3 V, the electronic states at 500 mV, 750 mV and 1.9 V were attributed to the superatom molecular orbitals at the [18]annulene pore, which were significantly shifted towards the Fermi level due to the hybridization with the confined surface state.

6.
Angew Chem Int Ed Engl ; 62(24): e202302534, 2023 Jun 12.
Article En | MEDLINE | ID: mdl-36929312

Graphene nanoribbons (GNRs) and nanographenes synthesized by on-surface reactions using tailor-made molecular precursors offer an ideal playground for a study of magnetism towards nano-spintronics. Although the zigzag edge of GNRs has been known to host magnetism, the underlying metal substrates usually veil the edge-induced Kondo effect. Here, we report the on-surface synthesis of unprecedented, π-extended 7-armchair GNRs using 7-bromo-12-(10-bromoanthracen-9-yl)tetraphene as the precursor. Characterization by scanning tunneling microscopy/spectroscopy revealed unique rearrangement reactions leading to pentagon- or pentagon/heptagon-incorporated, nonplanar zigzag termini, which demonstrated Kondo resonances even on bare Au(111). Density functional theory calculations indicate that the nonplanar structure significantly reduces the interaction between the zigzag terminus and the Au(111) surface, leading to a recovery of the spin localization of the zigzag edge. Such a distortion of planar GNR structures offers a degree of freedom to control the magnetism on metal substrates.

7.
Nat Chem ; 15(1): 136-142, 2023 Jan.
Article En | MEDLINE | ID: mdl-36344816

Substituting carbon with silicon in organic molecules and materials has long been an attractive way to modify their electronic structure and properties. Silicon-doped graphene-based materials are known to exhibit exotic properties, yet conjugated organic materials with atomically precise Si substitution have remained difficult to prepare. Here we present the on-surface synthesis of one- and two-dimensional covalent organic frameworks whose backbones contain 1,4-disilabenzene (C4Si2) linkers. Silicon atoms were first deposited on a Au(111) surface, forming a AuSix film on annealing. The subsequent deposition and annealing of a bromo-substituted polyaromatic hydrocarbon precursor (triphenylene or pyrene) on this surface led to the formation of the C4Si2-bridged networks, which were characterized by a combination of high-resolution scanning tunnelling microscopy and photoelectron spectroscopy supported by density functional theory calculations. Each Si in a hexagonal C4Si2 ring was found to be covalently linked to one terminal Br atom. For the linear structure obtained with the pyrene-based precursor, the C4Si2 rings were converted into C4Si pentagonal siloles by further annealing.

8.
Chemistry ; 29(15): e202203622, 2023 Mar 13.
Article En | MEDLINE | ID: mdl-36539358

On-surface cyclodehydrogenation recently became an important reaction to planarize π-conjugated molecules and oligomers. However, the high-activation barrier to cleave the C-H bond often requires high-temperature annealing, consequently restricting structures of precursor molecules and/or leading to random fusion at their edges. Here, we present a synthesis of pyrrolopyrrole-bridged ladder oligomers from 11,11,12,12-tetrabromo-1,4,5,8-tetraaza-9,10-anthraquinodimethane molecules on Ag(111) with bond-resolved scanning tunnelling microscopy. This non-dehydrogenative cyclization between pyrazine and ethynylene/cumulene groups has a low-activation barrier for forming intermediary dimeric oligomer containing dipyrazinopyrrolopyrrolopyrazine units, thus giving new insight into the strain-sensitive in ladder-oligomer formation.

9.
Phys Chem Chem Phys ; 24(36): 22191-22197, 2022 Sep 21.
Article En | MEDLINE | ID: mdl-36093623

Multiple intermolecular interactions offer a high degree of controllability of on-surface molecular assemblies. Here, two kinds of molecular networks were formed by depositing 11,11,12,12-tetrabromo-1,4,5,8-tetraaza-9,10-anthraquinodimethane derivatives with two different alkyl groups in length (C4 and C8) on clean Ag(111) surfaces under ultrahigh vacuum. The detailed structures of each network before and after the cleavage of the C-Br bonds were investigated with high-resolution scanning tunneling microscopy at low temperature. We found that the diffusion of the Br atoms by high-temperature annealing plays a role in the formation of Br-mediated self-assembly. While dissociated Br atoms interacted with alkyl groups by hydrogen bonding through C-H⋯Br contacts in both systems, the different strengths of the van der Waals interactions between the alkyl groups resulted in the formation of different structures.

10.
ACS Nano ; 16(7): 11244-11250, 2022 Jul 26.
Article En | MEDLINE | ID: mdl-35730993

The design of magnetic topological states due to spin polarization in an extended π carbon system has great potential in spintronics application. Although magnetic zigzag edges in graphene nanoribbons (GNRs) have been investigated earlier, real-space observation and manipulation of spin polarization in a heteroatom substituted system remains challenging. Here, we investigate a zero-bias peak at a boron site embedded at the center of an armchair-type GNR on a AuSiX/Au(111) surface with a combination of low-temperature scanning tunneling microscopy/spectroscopy and density functional theory calculations. After the tip-induced removal of a Si atom connected to two adjacent boron atoms, a clear Kondo resonance peak appeared and was further split by an applied magnetic field of 12 T. This magnetic state can be relayed along the longitudinal axis of the GNR by sequential removal of Si atoms.

11.
Angew Chem Int Ed Engl ; 61(3): e202114697, 2022 Jan 17.
Article En | MEDLINE | ID: mdl-34826204

On-surface chemical reaction has become a very powerful technique to synthesize nanostructures by linking small molecules in the bottom-up approach. Given the fact that most reactants are simultaneously activated at certain temperatures, a sequential reaction in a controlled way has remained challenging. Here, we present an on-surface synthesis of multi-block co-oligomers from trifluoromethyl (CF3 ) substituted porphyrin metal complexes. The oligomerization on Au(111) is demonstrated with a combination of bond-resolved scanning probe microscopy and density functional theory (DFT) calculations. Even after the first oligomerization of single monomer unit, the termini of the oligomer keep the CF3 group, which can be used as a reactant for further coupling in a sequential order. Consequently, copper, cobalt, and palladium complexes of bisanthracene-fused porphyrin oligomers were linked with each other in a designed order.

12.
Angew Chem Int Ed Engl ; 60(36): 19598-19603, 2021 Sep 01.
Article En | MEDLINE | ID: mdl-33955126

On-surface synthesis is a powerful method for the fabrication of π-conjugated nanomaterials. Herein, we demonstrate chemoselective Sonogashira coupling between (trimethylsilyl)ethynyl and chlorophenyl groups in silylethynyl- and chloro-substituted partially fluorinated phenylene ethynylenes (SiCPFPEs) on Ag(111). The desilylative Sonogashira coupling occurred with high chemoselectivity up to 75 %, while the competing Ullmann and desilylative Glaser homocoupling reactions were suppressed. A combination of bond-resolved scanning tunneling microscopy/atomic force microscopy (STM/AFM) and DFT calculations revealed that the oligomers were obtained by the formation of intermolecular silylene tethers (-Me2 Si-) through CH3 -Si bond activation at 130 °C and subsequent elimination of the tethers at an elevated temperature of 200 °C.

13.
Nano Lett ; 21(15): 6456-6462, 2021 Aug 11.
Article En | MEDLINE | ID: mdl-34038137

Two-dimensional honeycomb molecular networks confine a substrate's surface electrons within their pores, providing an ideal playground to investigate the quantum electron scattering phenomena. Besides surface state confinement, laterally protruding organic states can collectively hybridize at the smallest pores into superatom molecular orbitals. Although both types of pore states could be simultaneously hosted within nanocavities, their coexistence and possible interaction are unexplored. Here, we show that these two types of pore states do coexist within the smallest nanocavities of a two-dimensional halogen-bonding multiporous network grown on Ag(111) studied using a combination of scanning tunneling microscopy and spectroscopy, density functional theory calculations, and electron plane wave expansion simulations. We find that superatom molecular orbitals undergo an important stabilization when hybridizing with the confined surface state, following the significant lowering of its free-standing energy. These findings provide further control over the surface electronic structure exerted by two-dimensional nanoporous systems.

14.
Phys Chem Chem Phys ; 23(9): 5455-5459, 2021 Mar 11.
Article En | MEDLINE | ID: mdl-33650587

Electronic properties of molecules and carbon nanomaterials are usually affected by metal substrates. An electronic decoupling buffer layer is of importance to reveal their intrinsic properties. Here, the strength of electronic decoupling by a gold silicide buffer layer formed on Au(111) was studied using scanning tunneling microscopy/spectroscopy. The HOMO-LUMO gap of fullerene adsorbed on the buffer layer is approximately 3.0 eV, which is in between that on bare Au(111) and on a NaCl bilayer film, indicating a moderate decoupling.

15.
Angew Chem Int Ed Engl ; 60(17): 9427-9432, 2021 Apr 19.
Article En | MEDLINE | ID: mdl-33576120

Cyclo-dehydrogenation is of importance to induce the planarization of molecules on noble surfaces upon annealing. In contrast to a number of successful syntheses of polycyclic aromatic hydrocarbons by forming carbon-carbon bonds, it is still rare to conduct conjugation and cleavage of carbon-nitrogen bonds in molecules. Here, we present a systematic transformation of the C-N bonds in11,11,12,12-tetraphenyl-1,4,5,8-tetraazaanthraquinodimethane as well as three other derivatives on Au(111). With bond-resolved scanning tunneling microscopy, we discovered novel the "heterocyclic segregation" reaction of one pyrazine ring with two nitrogen atoms to form two quinoline rings with one nitrogen each. Density functional theory calculations showed that the intramolecular ring-forming and -opening of N-heterocycles are strongly affected by the initial hydrogen-substrate interaction.

16.
J Am Chem Soc ; 142(26): 11363-11369, 2020 Jul 01.
Article En | MEDLINE | ID: mdl-32413264

Heterocyclic [8]circulenes are an important class of polycyclic aromatic hydrocarbon molecules because of their unique structural properties and promising applications. However, the synthesis of heterocyclic [8]circulenes is still limited and thus is an important synthetic challenge. Here we describe the first example of a π-extended diaza[8]circulene surrounded by and fused with six hexagons and two pentagons, which was successfully synthesized only by a combined in-solution and on-surface synthetic strategy. State-of-the-art scanning tunneling microscopy with a CO-functionalized tip and density functional theory calculations revealed its planar conformation and unique electronic structure.

17.
Angew Chem Int Ed Engl ; 59(27): 10842-10847, 2020 Jun 26.
Article En | MEDLINE | ID: mdl-32227562

Recent advances in scanning probe microscopy on surface enable not only direct observation of molecular structures but also local probe reactions, in which unstable short-lived products have been synthesized and analyzed. Now, an endergonic reaction to synthesize a single Sondheimer-Wong diyne from 6,13-dibromopentaleno[1,2-b:4,5-b']dinaphthalene by local probe chemistry on a ultra-thin film of NaCl formed on a Cu(111) surface at 4.3 K is presented. The structures of the precursor, two intermediates, and the final product were directly identified by the differential conductance imaging with a CO functionalized tip. DFT calculations revealed that the multiple-step reaction, being endergonic overall, is facilitated by temporal charging and discharging of the molecule placed in the nanometric junction between the Cu tip and the Cu substrate underneath the ultra-thin NaCl film. This local probe reaction expands possibilities to synthesize nanocarbon materials in a bottom-up manner.

18.
Sci Adv ; 6(9): eaay8913, 2020 Feb.
Article En | MEDLINE | ID: mdl-32158948

Recent advances in state-of-the-art probe microscopy allow us to conduct single molecular chemistry via tip-induced reactions and direct imaging of the inner structure of the products. Here, we synthesize three-dimensional graphene nanoribbons by on-surface chemical reaction and take advantage of tip-induced assembly to demonstrate their capability as a playground for local probe chemistry. We show that the radical caused by tip-induced debromination can be reversibly terminated by either a bromine atom or a fullerene molecule. The experimental results combined with theoretical calculations pave the way for sequential reactions, particularly addition reactions, by a local probe at the single-molecule level decoupled from the surface.

19.
Chemphyschem ; 20(18): 2348-2353, 2019 09 17.
Article En | MEDLINE | ID: mdl-31304992

We study the band gap of finite N A = 7 armchair graphene nanoribbons (7-AGNRs) on Au(111) through scanning tunneling microscopy/spectroscopy combined with density functional theory calculations. The band gap of 7-AGNRs with lengths of 8 nm and more is converged to within 50 meV of its bulk value of ≈ 2 . 3 eV , while the band gap opens by several hundred meV in very short 7-AGNRs. We demonstrate that even an atomic defect, such as the addition of one hydrogen atom at the termini, has a significant effect - in this case, lowering the band gap. The effect can be captured in terms of a simple analytical model by introducing an effective "electronic length".

20.
ACS Nano ; 13(1): 689-697, 2019 Jan 22.
Article En | MEDLINE | ID: mdl-30525461

Metal-surface physisorbed graphene nanoribbons (GNRs) constitute mobile nanocontacts whose interest is simultaneously mechanical, electronic, and tribological. Previous work showed that GNRs adsorbed on Au(111) generally slide smoothly and superlubrically owing to the incommensurability of their structures. We address here the nanomechanics of detachment, as realized when one end is picked up and lifted by an AFM cantilever. AFM nanomanipulations and molecular-dynamics (MD) simulations identify two successive regimes, characterized by (i) a progressively increasing local bending, accompanied by the smooth sliding of the adhered part, followed by (ii) a stick-slip dynamics involving sudden bending relaxation associated with intermittent jumps of the remaining adhered GNR segment and tail end. AFM measurements of the vertical force exhibit oscillations which, compared with MD simulations, can be associated with the successive detachment of individual GNR unit cells of length 0.42 nm. Extra modulations within one single period are caused by steplike advancements of the still-physisorbed part of the GNR. The sliding of the incommensurate moiré pattern that accompanies the GNR lifting generally yields an additional long-period oscillation: while almost undetectable when the GNR is aligned in the standard "R30" orientation on Au(111), we predict that such feature should become prominent in the alternative rotated "R0" orientation on the same surface, or on a different surface, such as perhaps Ag(111).

...