Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Genes Cells ; 29(5): 397-416, 2024 May.
Article En | MEDLINE | ID: mdl-38454012

Staphylococcus aureus is a noteworthy pathogen in allergic diseases, as four staphylococcal exotoxins activate mast cells, a significant contributor to inflammation, in an IgE-independent manner. Although the adhesion of mast cells is an essential process for their immune responses, only a small number of exotoxins have been reported to affect the process. Here, we demonstrated that staphylococcal superantigen-like (SSL) 3, previously identified as a toll-like receptor 2 agonist, induced the adhesion of murine bone marrow-derived mast cells to culture substratum. SSL3-induced adhesion was mediated by fibronectin in an Arg-Gly-Asp (RGD) sequence-dependent manner, suggesting the integrins were involved in the process. Additionally, SSL3 was found to bind to an anti-adhesive surface protein CD43. SSL3 induced the adhesion of HEK293 cells expressing exogenous CD43, suggesting that CD43 is the target molecule for adhesion induced by SSL3. Evaluation of SSL3-derived mutants showed that the C-terminal region (253-326), specifically T285 and H307, are necessary to induce adhesion. SSL3 augmented the IL-13 production of mast cells in response to immunocomplex and SSL12. These findings reveal a novel function of SSL3, triggering cell adhesion and enhancing mast cell activation. This study would clarify the correlation between S. aureus and allergic diseases such as atopic dermatitis.


Cell Adhesion , Leukosialin , Mast Cells , Staphylococcus aureus , Superantigens , Animals , Mast Cells/metabolism , Mast Cells/immunology , Mice , Humans , Superantigens/metabolism , Staphylococcus aureus/metabolism , Staphylococcus aureus/immunology , HEK293 Cells , Leukosialin/metabolism , Bacterial Proteins/metabolism , Interleukin-13/metabolism , Mice, Inbred C57BL
...