Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Biol Chem ; 299(10): 105251, 2023 Oct.
Article En | MEDLINE | ID: mdl-37714462

Circadian rhythms are controlled at the cellular level by a molecular clock consisting of several genes/proteins engaged in a transcription-translation-degradation feedback loop. These core clock proteins regulate thousands of tissue-specific genes. Regarding circadian control in neoplastic tissues, reports to date have demonstrated anomalous circadian function in tumor models and cultured tumor cells. We have extended these studies by analyzing circadian rhythmicity genome-wide in a mouse model of liver cancer, in which mice treated with diethylnitrosamine at 15 days develop liver tumors by 6 months. We injected tumor-bearing and control tumor-free mice with cisplatin every 2 h over a 24-h cycle; 2 h after each injection mice were sacrificed and gene expression was measured by XR-Seq (excision repair sequencing) assay. Rhythmic expression of several core clock genes was observed in both healthy liver and tumor, with clock genes in tumor exhibiting typically robust amplitudes and a modest phase advance. Interestingly, although normal hepatic cells and hepatoma cancer cells expressed a comparable number of genes with circadian rhythmicity (clock-controlled genes), there was only about 10% overlap between the rhythmic genes in normal and cancerous cells. "Rhythmic in tumor only" genes exhibited peak expression times mainly in daytime hours, in contrast to the more common pre-dawn and pre-dusk expression times seen in healthy livers. Differential expression of genes in tumors and healthy livers across time may present an opportunity for more efficient anticancer drug treatment as a function of treatment time.


Carcinoma, Hepatocellular , Circadian Rhythm , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Circadian Rhythm/genetics , Liver/physiopathology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Excision Repair , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Gene Ontology
2.
Nucleic Acids Res ; 51(12): 6238-6245, 2023 07 07.
Article En | MEDLINE | ID: mdl-37144462

Nucleotide excision repair removes UV-induced DNA damage through two distinct sub-pathways, global repair and transcription-coupled repair (TCR). Numerous studies have shown that in human and other mammalian cell lines that the XPC protein is required for repair of DNA damage from nontranscribed DNA via global repair and the CSB protein is required for repair of lesions from transcribed DNA via TCR. Therefore, it is generally assumed that abrogating both sub-pathways with an XPC-/-/CSB-/- double mutant would eliminate all nucleotide excision repair. Here we describe the construction of three different XPC-/-/CSB-/- human cell lines that, contrary to expectations, perform TCR. The XPC and CSB genes were mutated in cell lines derived from Xeroderma Pigmentosum patients as well as from normal human fibroblasts and repair was analyzed at the whole genome level using the very sensitive XR-seq method. As predicted, XPC-/- cells exhibited only TCR and CSB-/- cells exhibited only global repair. However, the XPC-/-/CSB-/- double mutant cell lines, although having greatly reduced repair, exhibited TCR. Mutating the CSA gene to generate a triple mutant XPC-/-/CSB-/-/CSA-/- cell line eliminated all residual TCR activity. Together, these findings provide new insights into the mechanistic features of mammalian nucleotide excision repair.


DNA Repair , Xeroderma Pigmentosum , Animals , Humans , DNA Repair/genetics , DNA Damage , Xeroderma Pigmentosum/genetics , Cell Line , Receptors, Antigen, T-Cell/genetics , Ultraviolet Rays , Mammals/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
3.
Proc Natl Acad Sci U S A ; 119(35): e2210176119, 2022 08 30.
Article En | MEDLINE | ID: mdl-35994676

Nucleotide excision repair is the principal mechanism for removing bulky DNA adducts from the mammalian genome, including those induced by environmental carcinogens such as UV radiation, and anticancer drugs such as cisplatin. Surprisingly, we found that the widely used thymidine analog EdU is a substrate for excision repair when incorporated into the DNA of replicating cells. A number of thymidine analogs were tested, and only EdU was a substrate for excision repair. EdU excision was absent in repair-deficient cells, and in vitro, DNA duplexes bearing EdU were also substrates for excision by mammalian cell-free extracts. We used the excision repair sequencing (XR-seq) method to map EdU repair in the human genome at single-nucleotide resolution and observed that EdU was excised throughout the genome and was subject to transcription-coupled repair as evidenced by higher repair rates in the transcribed strand (TS) relative to the nontranscribed strand (NTS) in transcriptionally active genes. These properties of EdU, combined with its cellular toxicity and ability to cross the blood-brain barrier, make it a potential candidate for treating cancers of the brain, a tissue that typically demonstrates limited replication in adults.


DNA Damage , DNA Repair , Deoxyuridine , DNA/chemistry , DNA/genetics , Deoxyuridine/analogs & derivatives , Genome, Human , Humans , Thymidine/analogs & derivatives , Transcription, Genetic , Ultraviolet Rays
4.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article En | MEDLINE | ID: mdl-35217627

Drosophila melanogaster has been extensively used as a model system to study ionizing radiation and chemical-induced mutagenesis, double-strand break repair, and recombination. However, there are only limited studies on nucleotide excision repair in this important model organism. An early study reported that Drosophila lacks the transcription-coupled repair (TCR) form of nucleotide excision repair. This conclusion was seemingly supported by the Drosophila genome sequencing project, which revealed that Drosophila lacks a homolog to CSB, which is known to be required for TCR in mammals and yeasts. However, by using excision repair sequencing (XR-seq) genome-wide repair mapping technology, we recently found that the Drosophila S2 cell line performs TCR comparable to human cells. Here, we have extended this work to Drosophila at all its developmental stages. We find TCR takes place throughout the life cycle of the organism. Moreover, we find that in contrast to humans and other multicellular organisms previously studied, the XPC repair factor is required for both global and transcription-coupled repair in Drosophila.


DNA Repair , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Transcription, Genetic , Animals , Cell Line , Cisplatin/pharmacology , DNA/drug effects , DNA/radiation effects , Ultraviolet Rays
5.
Biochem Biophys Res Commun ; 519(1): 204-210, 2019 10 29.
Article En | MEDLINE | ID: mdl-31493872

The ERCC1-XPF heterodimer is a structure-specific endonuclease and plays multiple roles in various DNA repair pathways including nucleotide excision repair and also telomere maintenance. The dimer formation, which is mediated by their C-terminal helix-hairpin-helix regions, is essential for their endonuclease activity as well as the stability of each protein. However, the detailed mechanism of how a cellular level of ERCC1-XPF is regulated still remains elusive. Here, we report the identification of DDB1- and CUL4-associated factor 7 (DCAF7, also known as WDR68/HAN11) as a novel interacting protein of ERCC1-XPF by mass spectrometry after tandem purification. Immunoprecipitation experiments confirmed their interaction and suggested dominant association of DCAF7 with XPF but not ERCC1. Interestingly, siRNA-mediated knockdown of DCAF7, but not DDB1, attenuated the cellular level of ERCC1-XPF, which is partly dependent on proteasome. The depletion of TCP1α, one of components of the molecular chaperon TRiC/CCT known to interact with DCAF7 and promote its folding, also reduced ERCC1-XPF level. Finally, we show that the depletion of DCAF7 causes inefficient repair of UV-induced (6-4) photoproducts, which can be rescued by ectopic overexpression of XPF or ERCC1-XPF. Altogether, our results strongly suggest that DCAF7 is a novel regulator of ERCC1-XPF protein level and cellular nucleotide excision repair activity.


Adaptor Proteins, Signal Transducing/metabolism , DNA Repair , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Cell Line , Down-Regulation , Humans , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Multimerization
...