Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 3(8): pgae328, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39161731

RESUMEN

Endotoxins, or lipopolysaccharides (LPS), are potent immunostimulatory molecules of critical concern in bacterial recombinant protein expression systems. The gram-negative bacterium Acinetobacter baumannii exhibits an interesting and unique phenotype characterized by the complete loss of LPS. In this study, we developed a novel system for producing recombinant proteins completely devoid of endotoxin contamination using LPS-deficient A. baumannii. We purified endotoxin-free functional green fluorescent protein, which reduced endotoxin contamination by approximately three orders of magnitude, and also purified the functional cytokine tumor necrosis factor (TNF)-α. Additionally, utilization of the Omp38 signal peptide of A. baumannii enabled the extracellular production of variable domain of heavy chain of heavy chain (VHH) antibodies. With these advantages, mNb6-tri-20aa, a multivalent VHH that specifically binds to the spike protein of severe acute respiratory syndrome coronavirus 2, was purified from the culture supernatant, and endotoxin contamination was reduced by a factor of approximately 2 × 105 compared with that in conventional expression systems. A virus neutralization assay demonstrated the functionality of the purified antibody in suppressing viral infections. Moreover, we applied our system to produce ozoralizumab, a multispecific VHH that binds to human TNF-α and albumin and are marketed as a rheumatoid arthritis drug. We successfully purified a functional antibody from endotoxin contamination. This system establishes a new, completely endotoxin-free platform for the expression of recombinant proteins, which distinguishes it from other bacterial expression systems, and holds promise for future applications.

2.
Microbiol Spectr ; 10(5): e0192822, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36173297

RESUMEN

Colistin, which targets lipopolysaccharide (LPS), is used as a last-resort drug against severe infections caused by drug-resistant Acinetobacter baumannii. However, A. baumannii possesses two colistin-resistance mechanisms. LPS modification caused by mutations in pmrAB genes is often observed in clinical isolates of multidrug-resistant Gram-negative pathogens. In addition to LPS modification, A. baumannii has a unique colistin resistance mechanism, a complete loss of LPS due to mutations in the lpxACD genes, which are involved in LPS biosynthesis. This study aimed to elucidate the detailed mechanism of the emergence of colistin-resistant A. baumannii using strains with the same genetic background. Various colistin-resistant strains were generated experimentally using colistin alone and in combination with other antimicrobials, such as meropenem and ciprofloxacin, and the mutation spectrum was analyzed. In vitro selection of A. baumannii in the presence of colistin led to the emergence of strains harboring mutations in lpxACD genes, resulting in LPS-deficient colistin-resistant strains. However, combination of colistin with other antimicrobials led to the selection of pmrAB mutant strains, resulting in strains with modified LPS (LPS-modified strains). Further, the LPS-deficient strains showed decreased fitness and increased susceptibility to many antibiotics and disinfectants. As LPS-deficient strains have a higher biological cost than LPS-modified strains, our findings suggested that pmrAB mutants are more likely to be isolated in clinical settings. We provide novel insights into the mechanisms of resistance to colistin and provide substantial solutions along with precautions for facilitating current research and treatment of colistin-resistant A. baumannii infections. IMPORTANCE Acinetobacter baumannii has developed resistance to various antimicrobial drugs, and its drug-resistant strains cause nosocomial infections. Controlling these infections has become a global clinical challenge. Carbapenem antibiotics are the frontline treatment drugs for infectious diseases caused by A. baumannii. For patients with infections caused by carbapenem-resistant A. baumannii, colistin-based therapy is often the only treatment option. However, A. baumannii readily acquires resistance to colistin. Many patients infected with colistin-resistant A. baumannii undergo colistin treatment before isolation of the colistin-resistant strain, and it is hypothesized that colistin resistance predominantly emerges under selective pressure during colistin therapy. Although the concomitant use of colistin and carbapenems has been reported to have a synergistic effect in vitro against carbapenem-resistant A. baumannii strains, our observations strongly suggest the need for attention to the emergence of strains with a modified lipopolysaccharide during treatment.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Desinfectantes , Humanos , Colistina/farmacología , Colistina/uso terapéutico , Acinetobacter baumannii/genética , Lipopolisacáridos , Infecciones por Acinetobacter/tratamiento farmacológico , Meropenem/farmacología , Meropenem/uso terapéutico , Pruebas de Sensibilidad Microbiana , Carbapenémicos/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Desinfectantes/farmacología , Farmacorresistencia Bacteriana Múltiple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA