Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Cell Rep Med ; 3(11): 100815, 2022 11 15.
Article En | MEDLINE | ID: mdl-36384095

Over 90% of pancreatic cancers present mutations in KRAS, one of the most common oncogenic drivers overall. Currently, most KRAS mutant isoforms cannot be targeted directly. Moreover, targeting single RAS downstream effectors induces adaptive resistance mechanisms. We report here on the combined inhibition of SHP2, upstream of KRAS, using the allosteric inhibitor RMC-4550 and of ERK, downstream of KRAS, using LY3214996. This combination shows synergistic anti-cancer activity in vitro, superior disruption of the MAPK pathway, and increased apoptosis induction compared with single-agent treatments. In vivo, we demonstrate good tolerability and efficacy of the combination, with significant tumor regression in multiple pancreatic ductal adenocarcinoma (PDAC) mouse models. Finally, we show evidence that 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) can be used to assess early drug responses in animal models. Based on these results, we will investigate this drug combination in the SHP2 and ERK inhibition in pancreatic cancer (SHERPA; ClinicalTrials.gov: NCT04916236) clinical trial, enrolling patients with KRAS-mutant PDAC.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Carcinoma, Pancreatic Ductal/drug therapy , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Clinical Trials as Topic , Pancreatic Neoplasms
2.
Gastroenterology ; 161(1): 318-332.e9, 2021 07.
Article En | MEDLINE | ID: mdl-33819482

BACKGROUND & AIMS: The existence of different subtypes of pancreatic ductal adenocarcinoma (PDAC) and their correlation with patient outcome have shifted the emphasis on patient classification for better decision-making algorithms and personalized therapy. The contribution of mechanisms regulating the cancer stem cell (CSC) population in different subtypes remains unknown. METHODS: Using RNA-seq, we identified B-cell CLL/lymphoma 3 (BCL3), an atypical nf-κb signaling member, as differing in pancreatic CSCs. To determine the biological consequences of BCL3 silencing in vivo and in vitro, we generated bcl3-deficient preclinical mouse models as well as murine cell lines and correlated our findings with human cell lines, PDX models, and 2 independent patient cohorts. We assessed the correlation of bcl3 expression pattern with clinical parameters and subtypes. RESULTS: Bcl3 was significantly down-regulated in human CSCs. Recapitulating this phenotype in preclinical mouse models of PDAC via BCL3 genetic knockout enhanced tumor burden, metastasis, epithelial to mesenchymal transition, and reduced overall survival. Fluorescence-activated cell sorting analyses, together with oxygen consumption, sphere formation, and tumorigenicity assays, all indicated that BCL3 loss resulted in CSC compartment expansion promoting cellular dedifferentiation. Overexpression of BCL3 in human PDXs diminished tumor growth by significantly reducing the CSC population and promoting differentiation. Human PDACs with low BCL3 expression correlated with increased metastasis, and BCL3-negative tumors correlated with lower survival and nonclassical subtypes. CONCLUSIONS: We demonstrate that bcl3 impacts pancreatic carcinogenesis by restraining CSC expansion and by curtailing an aggressive and metastatic tumor burden in PDAC across species. Levels of BCL3 expression are a useful stratification marker for predicting subtype characterization in PDAC, thereby allowing for personalized therapeutic approaches.


B-Cell Lymphoma 3 Protein/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/metabolism , Animals , B-Cell Lymphoma 3 Protein/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/secondary , Cell Differentiation , Cell Line, Tumor , Cell Movement , Cell Proliferation , Energy Metabolism , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Neoplasm Invasiveness , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Signal Transduction , Tumor Burden , Tumor Cells, Cultured
3.
Cells ; 9(4)2020 04 24.
Article En | MEDLINE | ID: mdl-32344698

Pancreatic cancer is one of the deadliest cancer types urgently requiring effective therapeutic strategies. Autophagy occurs in several compartments of pancreatic cancer tissue including cancer cells, cancer associated fibroblasts, and immune cells where it can be subjected to a multitude of stimulatory and inhibitory signals fine-tuning its activity. Therefore, the effects of autophagy on pancreatic carcinogenesis and progression differ in a stage and context dependent manner. In the initiation stage autophagy hinders development of preneoplastic lesions; in the progression stage however, autophagy promotes tumor growth. This double-edged action of autophagy makes it a hard therapeutic target. Indeed, autophagy inhibitors have not yet shown survival improvements in clinical trials, indicating a need for better evaluation of existing results and smarter targeting techniques. Clearly, the role of autophagy in pancreatic cancer is complex and many aspects have to be considered when moving from the bench to the bedside.


Autophagy , Pancreatic Neoplasms/pathology , Translational Research, Biomedical , Animals , Clinical Trials as Topic , Humans , Molecular Targeted Therapy , Pancreatic Neoplasms/therapy , Tumor Microenvironment , Pancreatic Neoplasms
4.
Cell Death Discov ; 5: 64, 2019.
Article En | MEDLINE | ID: mdl-30774992

Harakiri (HRK) is a BH3-only protein of the Bcl-2 family and regulates apoptosis by interfering with anti-apoptotic Bcl-2 and Bcl-xL proteins. While its function is mainly characterized in the nervous system, its role in tumors is ill-defined with few studies demonstrating HRK silencing in tumors. In this study, we investigated the role of HRK in the most aggressive primary brain tumor, glioblastoma multiforme (GBM). We showed that HRK is differentially expressed among established GBM cell lines and that HRK overexpression can induce apoptosis in GBM cells at different levels. This phenotype can be blocked by forced expression of Bcl-2 and Bcl-xL, suggesting the functional interaction of Bcl-2/Bcl-xL and HRK in tumor cells. Moreover, HRK overexpression cooperates with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a known tumor-specific pro-apoptotic agent. Besides, secondary agents that augment TRAIL response, such as the histone deacetylase inhibitor MS-275, significantly increases HRK expression. In addition, GBM cell response to TRAIL and MS-275 can be partly abolished by HRK silencing. Finally, we showed that HRK induction suppresses tumor growth in orthotopic GBM models in vivo, leading to increased survival. Taken together, our results suggest that HRK expression is associated with GBM cell apoptosis and increasing HRK activity in GBM tumors might offer new therapeutic approaches.

5.
Gastroenterology ; 156(1): 203-217.e20, 2019 01.
Article En | MEDLINE | ID: mdl-30296435

BACKGROUND AND AIMS: Cells in pancreatic ductal adenocarcinoma (PDAC) undergo autophagy, but its effects vary with tumor stage and genetic factors. We investigated the consequences of varying levels of the autophagy related 5 (Atg5) protein on pancreatic tumor formation and progression. METHODS: We generated mice that express oncogenic Kras in primary pancreatic cancer cells and have homozygous disruption of Atg5 (A5;Kras) or heterozygous disruption of Atg5 (A5+/-;Kras), and compared them with mice with only oncogenic Kras (controls). Pancreata were analyzed by histology and immunohistochemistry. Primary tumor cells were isolated and used to perform transcriptome, metabolome, intracellular calcium, extracellular cathepsin activity, and cell migration and invasion analyses. The cells were injected into wild-type littermates, and orthotopic tumor growth and metastasis were monitored. Atg5 was knocked down in pancreatic cancer cell lines using small hairpin RNAs; cell migration and invasion were measured, and cells were injected into wild-type littermates. PDAC samples were obtained from independent cohorts of patients and protein levels were measured on immunoblot and immunohistochemistry; we tested the correlation of protein levels with metastasis and patient survival times. RESULTS: A5+/-;Kras mice, with reduced Atg5 levels, developed more tumors and metastases, than control mice, whereas A5;Kras mice did not develop any tumors. Cultured A5+/-;Kras primary tumor cells were resistant to induction and inhibition of autophagy, had altered mitochondrial morphology, compromised mitochondrial function, changes in intracellular Ca2+ oscillations, and increased activity of extracellular cathepsin L and D. The tumors that formed in A5+/-;Kras mice contained greater numbers of type 2 macrophages than control mice, and primary A5+/-;Kras tumor cells had up-regulated expression of cytokines that regulate macrophage chemoattraction and differentiation into M2 macrophage. Knockdown of Atg5 in pancreatic cancer cell lines increased their migratory and invasive capabilities, and formation of metastases following injection into mice. In human PDAC samples, lower levels of ATG5 associated with tumor metastasis and shorter survival time. CONCLUSIONS: In mice that express oncogenic Kras in pancreatic cells, heterozygous disruption of Atg5 and reduced protein levels promotes tumor development, whereas homozygous disruption of Atg5 blocks tumorigenesis. Therapeutic strategies to alter autophagy in PDAC should consider the effects of ATG5 levels to avoid the expansion of resistant and highly aggressive cells.


Autophagy-Related Protein 5/metabolism , Autophagy , Carcinoma, Pancreatic Ductal/metabolism , Cell Movement , Pancreatic Neoplasms/metabolism , Animals , Autophagy-Related Protein 5/deficiency , Autophagy-Related Protein 5/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/prevention & control , Carcinoma, Pancreatic Ductal/secondary , Cathepsins/genetics , Cathepsins/metabolism , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Disease Progression , Gene Expression Regulation, Neoplastic , Genes, ras , Heterozygote , Homozygote , Mice, Knockout , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/prevention & control , Signal Transduction , Tumor Burden , Tumor Cells, Cultured
6.
Nat Med ; 24(7): 954-960, 2018 07.
Article En | MEDLINE | ID: mdl-29808009

The ubiquitously expressed non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, is involved in signal transduction downstream of multiple growth factor, cytokine and integrin receptors1. Its requirement for complete RAS-MAPK activation and its role as a negative regulator of JAK-STAT signaling have established SHP2 as an essential player in oncogenic signaling pathways1-7. Recently, a novel potent allosteric SHP2 inhibitor was presented as a viable therapeutic option for receptor tyrosine kinase-driven cancers, but was shown to be ineffective in KRAS-mutant tumor cell lines in vitro8. Here, we report a central and indispensable role for SHP2 in oncogenic KRAS-driven tumors. Genetic deletion of Ptpn11 profoundly inhibited tumor development in mutant KRAS-driven murine models of pancreatic ductal adenocarcinoma and non-small-cell lung cancer. We provide evidence for a critical dependence of mutant KRAS on SHP2 during carcinogenesis. Deletion or inhibition of SHP2 in established tumors delayed tumor progression but was not sufficient to achieve tumor regression. However, SHP2 was necessary for resistance mechanisms upon blockade of MEK. Synergy was observed when both SHP2 and MEK were targeted, resulting in sustained tumor growth control in murine and human patient-derived organoids and xenograft models of pancreatic ductal adenocarcinoma and non-small-cell lung cancer. Our data indicate the clinical utility of dual SHP2/MEK inhibition as a targeted therapy approach for KRAS-mutant cancers.


Mutation/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Disease Progression , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Tyrosine Phosphatase, Non-Receptor Type 11/deficiency
...