Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Genet Med ; 26(4): 101057, 2024 Apr.
Article En | MEDLINE | ID: mdl-38158856

PURPOSE: We established the genetic etiology of a syndromic neurodevelopmental condition characterized by variable cognitive impairment, recognizable facial dysmorphism, and a constellation of extra-neurological manifestations. METHODS: We performed phenotypic characterization of 6 participants from 4 unrelated families presenting with a neurodevelopmental syndrome and used exome sequencing to investigate the underlying genetic cause. To probe relevance to the neurodevelopmental phenotype and craniofacial dysmorphism, we established two- and three-dimensional human stem cell-derived neural models and generated a stable cachd1 zebrafish mutant on a transgenic cartilage reporter line. RESULTS: Affected individuals showed mild cognitive impairment, dysmorphism featuring oculo-auriculo abnormalities, and developmental defects involving genitourinary and digestive tracts. Exome sequencing revealed biallelic putative loss-of-function variants in CACHD1 segregating with disease in all pedigrees. RNA sequencing in CACHD1-depleted neural progenitors revealed abnormal expression of genes with key roles in Wnt signaling, neurodevelopment, and organ morphogenesis. CACHD1 depletion in neural progenitors resulted in reduced percentages of post-mitotic neurons and enlargement of 3D neurospheres. Homozygous cachd1 mutant larvae showed mandibular patterning defects mimicking human facial dysmorphism. CONCLUSION: Our findings support the role of loss-of-function variants in CACHD1 as the cause of a rare neurodevelopmental syndrome with facial dysmorphism and multisystem abnormalities.


Abnormalities, Multiple , Craniofacial Abnormalities , Musculoskeletal Abnormalities , Neurodevelopmental Disorders , Animals , Humans , Abnormalities, Multiple/genetics , Craniofacial Abnormalities/genetics , Intellectual Disability/genetics , Musculoskeletal Abnormalities/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Syndrome , Zebrafish/genetics
2.
Cell Stem Cell ; 30(3): 312-332.e13, 2023 03 02.
Article En | MEDLINE | ID: mdl-36796362

Human genome variation contributes to diversity in neurodevelopmental outcomes and vulnerabilities; recognizing the underlying molecular and cellular mechanisms will require scalable approaches. Here, we describe a "cell village" experimental platform we used to analyze genetic, molecular, and phenotypic heterogeneity across neural progenitor cells from 44 human donors cultured in a shared in vitro environment using algorithms (Dropulation and Census-seq) to assign cells and phenotypes to individual donors. Through rapid induction of human stem cell-derived neural progenitor cells, measurements of natural genetic variation, and CRISPR-Cas9 genetic perturbations, we identified a common variant that regulates antiviral IFITM3 expression and explains most inter-individual variation in susceptibility to the Zika virus. We also detected expression QTLs corresponding to GWAS loci for brain traits and discovered novel disease-relevant regulators of progenitor proliferation and differentiation such as CACHD1. This approach provides scalable ways to elucidate the effects of genes and genetic variation on cellular phenotypes.


Neural Stem Cells , Zika Virus Infection , Zika Virus , Humans , Neural Stem Cells/metabolism , Cell Differentiation/genetics , Brain/metabolism , Zika Virus/metabolism , Gene Expression , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism
3.
Expert Opin Ther Targets ; 26(9): 811-822, 2022 09.
Article En | MEDLINE | ID: mdl-36424892

INTRODUCTION: The Helping to End Addiction Long-termSM Initiative supports a wide range of programs to develop new or improved prevention and opioid addiction treatment strategies. An essential component of this effort is to accelerate development of non-opioid pain therapeutics. In all fields of medicine, therapeutics development is an arduous process and late-stage translational efforts such as clinical trials to validate targets are particularly complex and costly. While there are plentiful novel targets for pain treatment, successful clinical validation is rare. It is therefore crucial to develop processes whereby therapeutic targets can be reasonably 'de-risked' prior to substantial late-stage validation efforts. Such rigorous validation of novel therapeutic targets in the preclinical space will give potential private sector partners the confidence to pursue clinical validation of promising therapeutic concepts and compounds. AREAS COVERED: In 2020, the National Institutes of Health (NIH) held the Target Validation for Non-Addictive Therapeutics Development for Pain workshop to gather insights from key opinion leaders in academia, industry, and venture-financing. EXPERT OPINION: The result was a roadmap for pain target validation focusing on three modalities: 1) human evidence; 2) assay development in vitro; 3) assay development in vivo.


Opioid-Related Disorders , Pain , Humans , Pain/drug therapy , Opioid-Related Disorders/drug therapy
4.
Cell Death Dis ; 13(3): 262, 2022 03 24.
Article En | MEDLINE | ID: mdl-35322011

Mutations in N-glycanase 1 (NGLY1), which deglycosylates misfolded glycoproteins for degradation, can cause NGLY1 deficiency in patients and their abnormal fetal development in multiple organs, including microcephaly and other neurological disorders. Using cerebral organoids (COs) developed from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), we investigate how NGLY1 dysfunction disturbs early brain development. While NGLY1 loss had limited impact on the undifferentiated cells, COs developed from NGLY1-deficient hESCs showed defective formation of SATB2-positive upper-layer neurons, and attenuation of STAT3 and HES1 signaling critical for sustaining radial glia. Bulk and single-cell transcriptomic analysis revealed premature neuronal differentiation accompanied by downregulation of secreted and transcription factors, including TTR, IGFBP2, and ID4 in NGLY1-deficient COs. NGLY1 malfunction also dysregulated ID4 and enhanced neuronal differentiation in CO transplants developed in vivo. NGLY1-deficient CO cells were more vulnerable to multiple stressors; treating the deficient cells with recombinant TTR reduced their susceptibility to stress from proteasome inactivation, likely through LRP2-mediated activation of MAPK signaling. Expressing NGLY1 led to IGFBP2 and ID4 upregulation in CO cells developed from NGLY1-deficiency patient's hiPSCs. In addition, treatment with recombinant IGFBP2 enhanced ID4 expression, STAT3 signaling, and proliferation of NGLY1-deficient CO cells. Overall, our discoveries suggest that dysregulation of stress responses and neural precursor differentiation underlies the brain abnormalities observed in NGLY1-deficient individuals.


Organoids , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Proteasome Endopeptidase Complex , Glycoproteins/metabolism , Humans , Neurogenesis , Organoids/metabolism , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/genetics , Proteasome Endopeptidase Complex/metabolism
5.
Semin Cell Dev Biol ; 111: 67-73, 2021 03.
Article En | MEDLINE | ID: mdl-32654970

Until the discovery of human embryonic stem cells and human induced pluripotent stem cells, biotechnology companies were severely limited in the number of human tissues that they could model in large-scale in vitro studies. Until this point, companies have been limited to immortalized cancer lines or a small number of primary cell types that could be extracted and expanded. Nowadays, protocols continue to be developed in the stem cell field, enabling researchers to model an ever-growing library of cell types in controlled, large-scale screens. One differentiation method in particular- cerebral organoids- shows substantial potential in the field of neuroscience and developmental neurobiology. Cerebral organoid technology is still in an early phase of development, and there are several challenges that are currently being addressed by academic and industrial researchers alike. Here we briefly describe some of the early adopters of cerebral organoids, several of the challenges that they are likely facing, and various technologies that are currently being implemented to overcome them.


Drug Discovery/methods , Drugs, Investigational/pharmacology , Models, Biological , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/pharmacology , Organoids/drug effects , CRISPR-Cas Systems , Cell Differentiation , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Drugs, Investigational/chemistry , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Machine Learning , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/chemistry , Organoids/metabolism , Organoids/pathology , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods
6.
Genome Biol ; 20(1): 142, 2019 07 17.
Article En | MEDLINE | ID: mdl-31315641

We develop CellSIUS (Cell Subtype Identification from Upregulated gene Sets) to fill a methodology gap for rare cell population identification for scRNA-seq data. CellSIUS outperforms existing algorithms for specificity and selectivity for rare cell types and their transcriptomic signature identification in synthetic and complex biological data. Characterization of a human pluripotent cell differentiation protocol recapitulating deep-layer corticogenesis using CellSIUS reveals unrecognized complexity in human stem cell-derived cellular populations. CellSIUS enables identification of novel rare cell populations and their signature genes providing the means to study those populations in vitro in light of their role in health and disease.


Single-Cell Analysis/methods , Transcriptome , Algorithms , Cell Line , Humans , Neurons/cytology
7.
Cell Rep ; 27(2): 616-630.e6, 2019 04 09.
Article En | MEDLINE | ID: mdl-30970262

Human pluripotent stem cells (hPSCs) generate a variety of disease-relevant cells that can be used to improve the translation of preclinical research. Despite the potential of hPSCs, their use for genetic screening has been limited by technical challenges. We developed a scalable and renewable Cas9 and sgRNA-hPSC library in which loss-of-function mutations can be induced at will. Our inducible mutant hPSC library can be used for multiple genome-wide CRISPR screens in a variety of hPSC-induced cell types. As proof of concept, we performed three screens for regulators of properties fundamental to hPSCs: their ability to self-renew and/or survive (fitness), their inability to survive as single-cell clones, and their capacity to differentiate. We identified the majority of known genes and pathways involved in these processes, as well as a plethora of genes with unidentified roles. This resource will increase the understanding of human development and genetics. This approach will be a powerful tool to identify disease-modifying genes and pathways.


CRISPR-Cas Systems/genetics , Genetic Testing/methods , Genome/genetics , Pluripotent Stem Cells/metabolism , Humans
8.
Nat Neurosci ; 22(3): 374-385, 2019 03.
Article En | MEDLINE | ID: mdl-30718903

Synapse density is reduced in postmortem cortical tissue from schizophrenia patients, which is suggestive of increased synapse elimination. Using a reprogrammed in vitro model of microglia-mediated synapse engulfment, we demonstrate increased synapse elimination in patient-derived neural cultures and isolated synaptosomes. This excessive synaptic pruning reflects abnormalities in both microglia-like cells and synaptic structures. Further, we find that schizophrenia risk-associated variants within the human complement component 4 locus are associated with increased neuronal complement deposition and synapse uptake; however, they do not fully explain the observed increase in synapse uptake. Finally, we demonstrate that the antibiotic minocycline reduces microglia-mediated synapse uptake in vitro and its use is associated with a modest decrease in incident schizophrenia risk compared to other antibiotics in a cohort of young adults drawn from electronic health records. These findings point to excessive pruning as a potential target for delaying or preventing the onset of schizophrenia in high-risk individuals.


Microglia/physiology , Neuronal Plasticity , Schizophrenia/physiopathology , Synapses/physiology , Adolescent , Adult , Aged , Anti-Bacterial Agents/administration & dosage , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/physiology , Male , Microglia/drug effects , Middle Aged , Minocycline/administration & dosage , Neural Stem Cells/physiology , Neuronal Plasticity/drug effects , Risk Factors , Synapses/drug effects , Young Adult
9.
Nat Commun ; 9(1): 4307, 2018 10 17.
Article En | MEDLINE | ID: mdl-30333485

Here we report Digital RNA with pertUrbation of Genes (DRUG-seq), a high-throughput platform for drug discovery. Pharmaceutical discovery relies on high-throughput screening, yet current platforms have limited readouts. RNA-seq is a powerful tool to investigate drug effects using transcriptome changes as a proxy, yet standard library construction is costly. DRUG-seq captures transcriptional changes detected in standard RNA-seq at 1/100th the cost. In proof-of-concept experiments profiling 433 compounds across 8 doses, transcription profiles generated from DRUG-seq successfully grouped compounds into functional clusters by mechanism of actions (MoAs) based on their intended targets. Perturbation differences reflected in transcriptome changes were detected for compounds engaging the same target, demonstrating the value of using DRUG-seq for understanding on and off-target activities. We demonstrate DRUG-seq captures common mechanisms, as well as differences between compound treatment and CRISPR on the same target. DRUG-seq provides a powerful tool for comprehensive transcriptome readout in a high-throughput screening environment.


Drug Discovery/methods , Gene Expression Profiling/methods , High-Throughput Screening Assays/methods , Sequence Analysis, RNA , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Humans
10.
Nat Med ; 24(7): 939-946, 2018 07.
Article En | MEDLINE | ID: mdl-29892062

CRISPR/Cas9 has revolutionized our ability to engineer genomes and conduct genome-wide screens in human cells1-3. Whereas some cell types are amenable to genome engineering, genomes of human pluripotent stem cells (hPSCs) have been difficult to engineer, with reduced efficiencies relative to tumour cell lines or mouse embryonic stem cells3-13. Here, using hPSC lines with stable integration of Cas9 or transient delivery of Cas9-ribonucleoproteins (RNPs), we achieved an average insertion or deletion (indel) efficiency greater than 80%. This high efficiency of indel generation revealed that double-strand breaks (DSBs) induced by Cas9 are toxic and kill most hPSCs. In previous studies, the toxicity of Cas9 in hPSCs was less apparent because of low transfection efficiency and subsequently low DSB induction3. The toxic response to DSBs was P53/TP53-dependent, such that the efficiency of precise genome engineering in hPSCs with a wild-type P53 gene was severely reduced. Our results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs. Moreover, as hPSCs can acquire P53 mutations14, cell replacement therapies using CRISPR/Cas9-enginereed hPSCs should proceed with caution, and such engineered hPSCs should be monitored for P53 function.


CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Genetic Engineering , Pluripotent Stem Cells/metabolism , Tumor Suppressor Protein p53/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Breaks, Double-Stranded , Gene Deletion , Humans , RNA, Guide, Kinetoplastida/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic , fas Receptor/genetics , fas Receptor/metabolism
11.
J Vis Exp ; (127)2017 09 19.
Article En | MEDLINE | ID: mdl-28994790

The recent emergence of Zika virus (ZIKV) in susceptible populations has led to an abrupt increase in microcephaly and other neurodevelopmental conditions in newborn infants. While mosquitos are the main route of viral transmission, it has also been shown to spread via sexual contact and vertical mother-to-fetus transmission. In this latter case of transmission, due to the unique viral tropism of ZIKV, the virus is believed to predominantly target the neural progenitor cells (NPCs) of the developing brain. Here a method for modeling ZIKV infection, and the resulting microcephaly, that occur when human cerebral organoids are exposed to live ZIKV is described. The organoids display high levels of virus within their neural progenitor population, and exhibit severe cell death and microcephaly over time. This three-dimensional cerebral organoid model allows researchers to conduct species-matched experiments to observe and potentially intervene with ZIKV infection of the developing human brain. The model provides improved relevance over standard two-dimensional methods, and contains human-specific cellular architecture and protein expression that are not possible in animal models.


Brain/virology , Neural Stem Cells/virology , Organoids/virology , Zika Virus Infection/virology , Brain/pathology , Humans , Neural Stem Cells/pathology
12.
Neurosci Lett ; 660: 109-114, 2017 Nov 01.
Article En | MEDLINE | ID: mdl-28923481

Triggering receptor expressed in myeloid cells (TREM2) is a member of the immunoglobulin superfamily and is expressed in macrophages, dendritic cells, microglia, and osteoclasts. TREM2 plays a role in phagocytosis, regulates release of cytokine, contributes to microglia maintenance, and its ectodomain is shed from the cell surface. Here, the question was addressed at which position sheddases cleave TREM2 and what are the proteases involved in this process. Using both pharmacological and genetic approaches we report that the main protease contributing to the release of TREM2 ectodomain is ADAM17, (a disintegrin and metalloproteinase domain containing protein, also called TACE, TNFα converting enzyme) while ADAM10 plays a minor role. Complementary biochemical experiments reveal that cleavage occurs between histidine 157 and serine 158. Shedding is not altered for the R47H-mutated TREM2 protein that confers an increased risk for the development of Alzheimers disease. These findings reveal a link between shedding of TREM2 and its regulation during inflammatory conditions or chronic neurodegenerative disease like AD in which activity or expression of sheddases might be altered.


ADAM17 Protein/metabolism , Histidine/metabolism , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , CHO Cells , Cell Line , Cricetulus , Humans , Membrane Proteins/metabolism
13.
Cell Stem Cell ; 20(1): 120-134, 2017 01 05.
Article En | MEDLINE | ID: mdl-28094016

During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/ß-catenin signaling in controlling this lineage decision. Together, these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders.


Brain/embryology , Cell Lineage , Embryonic Development , Human Embryonic Stem Cells/cytology , Single-Cell Analysis/methods , Animals , Brain/metabolism , Cell Line , Cell Lineage/genetics , Clone Cells , Embryonic Development/genetics , Humans , Mice , Models, Biological , Neurons/cytology , Neurons/metabolism , Reproducibility of Results , Sequence Analysis, RNA , Transcription Factors/metabolism , Transcriptome/genetics , Wnt Signaling Pathway/genetics
14.
Cell Stem Cell ; 19(6): 703-708, 2016 12 01.
Article En | MEDLINE | ID: mdl-27912091

Zika virus (ZIKV) can cross the placental barrier, resulting in infection of the fetal brain and neurological defects including microcephaly. The cellular tropism of ZIKV and the identity of attachment factors used by the virus to gain access to key cell types involved in pathogenesis are under intense investigation. Initial studies suggested that ZIKV preferentially targets neural progenitor cells (NPCs), providing an explanation for the developmental phenotypes observed in some pregnancies. The AXL protein has been nominated as a key attachment factor for ZIKV in several cell types including NPCs. However, here we show that genetic ablation of AXL has no effect on ZIKV entry or ZIKV-mediated cell death in human induced pluripotent stem cell (iPSC)-derived NPCs or cerebral organoids. These findings call into question the utility of AXL inhibitors for preventing birth defects after infection and suggest that further studies of viral attachment factors in NPCs are needed.


Cerebrum/pathology , Gene Deletion , Neural Stem Cells/metabolism , Neural Stem Cells/virology , Neuroprotection , Organoids/virology , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Zika Virus Infection/prevention & control , Cell Death , Gene Knockout Techniques , Humans , Neural Stem Cells/pathology , Organoids/metabolism , Organoids/pathology , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Zika Virus Infection/pathology , Axl Receptor Tyrosine Kinase
15.
Nat Neurosci ; 19(12): 1743-1749, 2016 12.
Article En | MEDLINE | ID: mdl-27798629

A fundamental impediment to understanding the brain is the availability of inexpensive and robust methods for targeting and manipulating specific neuronal populations. The need to overcome this barrier is pressing because there are considerable anatomical, physiological, cognitive and behavioral differences between mice and higher mammalian species in which it is difficult to specifically target and manipulate genetically defined functional cell types. In particular, it is unclear the degree to which insights from mouse models can shed light on the neural mechanisms that mediate cognitive functions in higher species, including humans. Here we describe a novel recombinant adeno-associated virus that restricts gene expression to GABAergic interneurons within the telencephalon. We demonstrate that the viral expression is specific and robust, allowing for morphological visualization, activity monitoring and functional manipulation of interneurons in both mice and non-genetically tractable species, thus opening the possibility to study GABAergic function in virtually any vertebrate species.


Brain/virology , Dependovirus/isolation & purification , GABAergic Neurons/virology , Interneurons/physiology , Vertebrates/virology , Animals , Behavior, Animal , Brain/metabolism , Cells, Cultured , Dependovirus/genetics , Female , GABAergic Neurons/pathology , Genetic Vectors/genetics , Mice, Inbred C57BL
16.
Stem Cell Reports ; 5(6): 933-945, 2015 Dec 08.
Article En | MEDLINE | ID: mdl-26610635

As a group, we met to discuss the current challenges for creating meaningful patient-specific in vitro models to study brain disorders. Although the convergence of findings between laboratories and patient cohorts provided us confidence and optimism that hiPSC-based platforms will inform future drug discovery efforts, a number of critical technical challenges remain. This opinion piece outlines our collective views on the current state of hiPSC-based disease modeling and discusses what we see to be the critical objectives that must be addressed collectively as a field.


Brain Diseases/pathology , Brain/pathology , Induced Pluripotent Stem Cells/pathology , Neurogenesis , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Brain Diseases/drug therapy , Brain Diseases/genetics , Brain Diseases/physiopathology , Drug Discovery/methods , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mosaicism , Precision Medicine/methods
17.
Nucleic Acids Res ; 43(10): e65, 2015 May 26.
Article En | MEDLINE | ID: mdl-25765640

Isogenic pluripotent stem cells are critical tools for studying human neurological diseases by allowing one to study the effects of a mutation in a fixed genetic background. Of particular interest are the spectrum of autism disorders, some of which are monogenic such as Timothy syndrome (TS); others are multigenic such as the microdeletion and microduplication syndromes of the 16p11.2 chromosomal locus. Here, we report engineered human embryonic stem cell (hESC) lines for modeling these two disorders using locus-specific endonucleases to increase the efficiency of homology-directed repair (HDR). We developed a system to: (1) computationally identify unique transcription activator-like effector nuclease (TALEN) binding sites in the genome using a new software program, TALENSeek, (2) assemble the TALEN genes by combining golden gate cloning with modified constructs from the FLASH protocol, and (3) test the TALEN pairs in an amplification-based HDR assay that is more sensitive than the typical non-homologous end joining assay. We applied these methods to identify, construct, and test TALENs that were used with HDR donors in hESCs to generate an isogenic TS cell line in a scarless manner and to model the 16p11.2 copy number disorder without modifying genomic loci with high sequence similarity.


Cell Engineering , Child Development Disorders, Pervasive/genetics , Embryonic Stem Cells , Models, Genetic , Autistic Disorder , Binding Sites , Cell Line , Deoxyribonucleases/metabolism , Gene Targeting , Genome, Human , Humans , Long QT Syndrome/genetics , Recombinational DNA Repair , Software , Syndactyly/genetics
18.
Neuron ; 83(1): 51-68, 2014 Jul 02.
Article En | MEDLINE | ID: mdl-24991954

Many neurological and psychiatric disorders affect the cerebral cortex, and a clearer understanding of the molecular processes underlying human corticogenesis will provide greater insight into such pathologies. To date, knowledge of gene expression changes accompanying corticogenesis is largely based on murine data. Here we present a searchable, comprehensive, temporal gene expression data set encompassing cerebral cortical development from human embryonic stem cells (hESCs). Using a modified differentiation protocol that yields neurons suggestive of prefrontal cortex, we identified sets of genes and long noncoding RNAs that significantly change during corticogenesis and those enriched for disease-associations. Numerous alternatively spliced genes with varying temporal patterns of expression are revealed, including TGIF1, involved in holoprosencephaly, and MARK1, involved in autism. We have created a database (http://cortecon.neuralsci.org/) that provides online, query-based access to changes in RNA expression and alternatively spliced transcripts during human cortical development.


Cerebral Cortex/cytology , Cerebral Cortex/embryology , Databases, Genetic , Embryonic Stem Cells/physiology , Gene Expression Profiling/methods , Gene Regulatory Networks/genetics , Animals , Cell Differentiation/genetics , Cells, Cultured , Databases, Genetic/trends , Gene Expression Profiling/trends , Humans , Mice , Organogenesis/physiology , Time Factors
19.
Neuron ; 83(2): 309-323, 2014 Jul 16.
Article En | MEDLINE | ID: mdl-24952961

To provide a temporal framework for the genoarchitecture of brain development, we generated in situ hybridization data for embryonic and postnatal mouse brain at seven developmental stages for ∼2,100 genes, which were processed with an automated informatics pipeline and manually annotated. This resource comprises 434,946 images, seven reference atlases, an ontogenetic ontology, and tools to explore coexpression of genes across neurodevelopment. Gene sets coinciding with developmental phenomena were identified. A temporal shift in the principles governing the molecular organization of the brain was detected, with transient neuromeric, plate-based organization of the brain present at E11.5 and E13.5. Finally, these data provided a transcription factor code that discriminates brain structures and identifies the developmental age of a tissue, providing a foundation for eventual genetic manipulation or tracking of specific brain structures over development. The resource is available as the Allen Developing Mouse Brain Atlas (http://developingmouse.brain-map.org).


Brain Mapping/methods , Brain/growth & development , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Animals , Gene Expression , Mice
20.
BMC Genomics ; 15: 154, 2014 Feb 24.
Article En | MEDLINE | ID: mdl-24564186

BACKGROUND: High-throughput sequencing is gradually replacing microarrays as the preferred method for studying mRNA expression levels, providing nucleotide resolution and accurately measuring absolute expression levels of almost any transcript, known or novel. However, existing microarray data from clinical, pharmaceutical, and academic settings represent valuable and often underappreciated resources, and methods for assessing and improving the quality of these data are lacking. RESULTS: To quantitatively assess the quality of microarray probes, we directly compare RNA-Seq to Agilent microarrays by processing 231 unique samples from the Allen Human Brain Atlas using RNA-Seq. Both techniques provide highly consistent, highly reproducible gene expression measurements in adult human brain, with RNA-Seq slightly outperforming microarray results overall. We show that RNA-Seq can be used as ground truth to assess the reliability of most microarray probes, remove probes with off-target effects, and scale probe intensities to match the expression levels identified by RNA-Seq. These sequencing scaled microarray intensities (SSMIs) provide more reliable, quantitative estimates of absolute expression levels for many genes when compared with unscaled intensities. Finally, we validate this result in two human cell lines, showing that linear scaling factors can be applied across experiments using the same microarray platform. CONCLUSIONS: Microarrays provide consistent, reproducible gene expression measurements, which are improved using RNA-Seq as ground truth. We expect that our strategy could be used to improve probe quality for many data sets from major existing repositories.


Brain/metabolism , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Sequence Analysis, RNA/methods , Cluster Analysis , Computational Biology/methods , Gene Expression , Gene Expression Profiling/standards , High-Throughput Nucleotide Sequencing , Humans , Neocortex/metabolism , Oligonucleotide Array Sequence Analysis/standards , Reproducibility of Results , Sequence Analysis, RNA/standards , Transcriptome
...