Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38930702

RESUMEN

Modern microtechnology methods are widely used to create neural networks on a chip with a connection architecture demonstrating properties of modularity and hierarchy similar to brain networks. Such in vitro networks serve as a valuable model for studying the interplay of functional architecture within modules, their activity, and the effectiveness of inter-module interaction. In this study, we use a two-chamber microfluidic platform to investigate functional connectivity and global activity in hierarchically connected modular neural networks. We found that the strength of functional connections within the module and the profile of network spontaneous activity determine the effectiveness of inter-modular interaction and integration activity in the network. The direction of intermodular activity propagation configures the different densities of inhibitory synapses in the network. The developed microfluidic platform holds the potential to explore function-structure relationships and efficient information processing in two- or multilayer neural networks, in both healthy and pathological states.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38048242

RESUMEN

Mammalian brains operate in very special surroundings: to survive they have to react quickly and effectively to the pool of stimuli patterns previously recognized as danger. Many learning tasks often encountered by living organisms involve a specific set-up centered around a relatively small set of patterns presented in a particular environment. For example, at a party, people recognize friends immediately, without deep analysis, just by seeing a fragment of their clothes. This set-up with reduced "ontology" is referred to as a "situation." Situations are usually local in space and time. In this work, we propose that neuron-astrocyte networks provide a network topology that is effectively adapted to accommodate situation-based memory. In order to illustrate this, we numerically simulate and analyze a well-established model of a neuron-astrocyte network, which is subjected to stimuli conforming to the situation-driven environment. Three pools of stimuli patterns are considered: external patterns, patterns from the situation associative pool regularly presented to the network and learned by the network, and patterns already learned and remembered by astrocytes. Patterns from the external world are added to and removed from the associative pool. Then, we show that astrocytes are structurally necessary for an effective function in such a learning and testing set-up. To demonstrate this we present a novel neuromorphic computational model for short-term memory implemented by a two-net spiking neural-astrocytic network. Our results show that such a system tested on synthesized data with selective astrocyte-induced modulation of neuronal activity provides an enhancement of retrieval quality in comparison to standard spiking neural networks trained via Hebbian plasticity only. We argue that the proposed set-up may offer a new way to analyze, model, and understand neuromorphic artificial intelligence systems.

3.
Front Psychol ; 14: 1160605, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37794908

RESUMEN

When viewing a completely ambiguous image, different interpretations can switch involuntarily due to internal top-down processing. In the case of the Necker cube, an entirely ambiguous stimulus, observers often display a bias in perceptual switching between two interpretations based on their perspectives: one with a from-above perspective (FA) and the other with a from-below perspective (FB). Typically, observers exhibit a priori top-down bias in favor of the FA interpretation, which may stem from a statistical tendency in everyday life where we more frequently observe objects from above. However, it remains unclear whether this perceptual bias persists when individuals voluntarily decide on the Necker cube's interpretation in goal-directed behavior, and the impact of ambiguity in this context is not well-understood. In our study, we instructed observers to voluntarily identify the orientation of a Necker cube while manipulating its ambiguity from low (LA) to high (HA). Our investigation aimed to test two hypotheses: (i) whether the perspective (FA or FB) would result in a bias in response time, and (ii) whether this bias would depend on the level of stimulus ambiguity. Additionally, we analyzed electroencephalogram (EEG) signals to identify potential biomarkers that could explain the observed perceptual bias. The behavioral results confirmed a perceptual bias in favor of the from-above perspective, as indicated by shorter response times. However, this bias diminished for stimuli with high ambiguity. For the LA stimuli, the occipital theta-band power consistently exceeded the frontal theta-band power throughout most of the decision-making time. In contrast, for the HA stimuli, the frontal theta-band power started to exceed the occipital theta-band power during the 0.3-s period preceding the decision. We propose that occipital theta-band power reflects evidence accumulation, while frontal theta-band power reflects its evaluation and decision-making processes. For the FB perspective, occipital theta-band power exhibited higher values and dominated over a longer duration, leading to an overall increase in response time. These results suggest that more information and more time are needed to encode stimuli with a FB perspective, as this template is less common for the observers compared to the template for a cube with a FA perspective.

4.
Sci Rep ; 13(1): 15660, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37731019

RESUMEN

A miniature postsynaptic current (mPSC) is a small, rare, and highly variable spontaneous synaptic event that is generally caused by the spontaneous release of single vesicles. The amplitude and variability of mPSCs are key measures of the postsynaptic processes and are taken as the main characteristics of an elementary unit (quantal size) in traditional quantal analysis of synaptic transmission. Due to different sources of biological and measurement noise, recordings of mPSCs exhibit high trial-to-trial heterogeneity, and experimental measurements of mPSCs are usually noisy and scarce, making their analysis demanding. Here, we present a sequential procedure for precise analysis of mPSC amplitude distributions for the range of small currents. To illustrate the developed approach, we chose previously obtained experimental data on the effect of the extracellular matrix on synaptic plasticity. The proposed statistical technique allowed us to identify previously unnoticed additional modality in the mPSC amplitude distributions, indicating the formation of new immature synapses upon ECM attenuation. We show that our approach can reliably detect multimodality in the distributions of mPSC amplitude, allowing for accurate determination of the size and variability of the quantal synaptic response. Thus, the proposed method can significantly expand the informativeness of both existing and newly obtained experimental data. We also demonstrated that mPSC amplitudes around the threshold of microcurrent excitation follow the Gumbel distribution rather than the binomial statistics traditionally used for a wide range of currents, either for a single synapse or when taking into consideration small influences of the adjacent synapses. Such behaviour is argued to originate from the theory of extreme processes. Specifically, recorded mPSCs represent instant random current fluctuations, among which there are relatively larger spikes (extreme events). They required more level of coherence that can be provided by different mechanisms of network or system level activation including neuron circuit signalling and extrasynaptic processes.


Asunto(s)
Imagen Multimodal , Potenciales Sinápticos , Transmisión Sináptica , Matriz Extracelular , Plasticidad Neuronal
5.
Biomimetics (Basel) ; 8(5)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37754173

RESUMEN

In this study, we introduce an innovative hybrid artificial neural network model incorporating astrocyte-driven short-term memory. The model combines a convolutional neural network with dynamic models of short-term synaptic plasticity and astrocytic modulation of synaptic transmission. The model's performance was evaluated using simulated data from visual change detection experiments conducted on mice. Comparisons were made between the proposed model, a recurrent neural network simulating short-term memory based on sustained neural activity, and a feedforward neural network with short-term synaptic depression (STPNet) trained to achieve the same performance level as the mice. The results revealed that incorporating astrocytic modulation of synaptic transmission enhanced the model's performance.

6.
Biomimetics (Basel) ; 8(3)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37504165

RESUMEN

We propose a new model for a neuromorphic olfactory analyzer based on memristive synapses. The model comprises a layer of receptive neurons that perceive various odors and a layer of "decoder" neurons that recognize these odors. It is demonstrated that connecting these layers with memristive synapses enables the training of the "decoder" layer to recognize two types of odorants of varying concentrations. In the absence of such synapses, the layer of "decoder" neurons does not exhibit specificity in recognizing odorants. The recognition of the 'odorant' occurs through the neural activity of a group of decoder neurons that have acquired specificity for the odorant in the learning process. The proposed phenomenological model showcases the potential use of a memristive synapse in practical odorant recognition applications.

7.
Biomimetics (Basel) ; 8(3)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37504208

RESUMEN

Mathematical and computer simulation of learning in living neural networks have typically focused on changes in the efficiency of synaptic connections represented by synaptic weights in the models. Synaptic plasticity is believed to be the cellular basis for learning and memory. In spiking neural networks composed of dynamical spiking units, a biologically relevant learning rule is based on the so-called spike-timing-dependent plasticity or STDP. However, experimental data suggest that synaptic plasticity is only a part of brain circuit plasticity, which also includes homeostatic and structural plasticity. A model of structural plasticity proposed in this study is based on the activity-dependent appearance and disappearance of synaptic connections. The results of the research indicate that such adaptive rewiring enables the consolidation of the effects of STDP in response to a local external stimulation of a neural network. Subsequently, a vector field approach is used to demonstrate the successive "recording" of spike paths in both functional connectome and synaptic connectome, and finally in the anatomical connectome of the network. Moreover, the findings suggest that the adaptive rewiring could stabilize network dynamics over time in the context of activity patterns' reproducibility. A universal measure of such reproducibility introduced in this article is based on similarity between time-consequent patterns of the special vector fields characterizing both functional and anatomical connectomes.

8.
Sensors (Basel) ; 23(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37430576

RESUMEN

Experiments show activation of the left dorsolateral prefrontal cortex (DLPFC) in motor imagery (MI) tasks, but its functional role requires further investigation. Here, we address this issue by applying repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC and evaluating its effect on brain activity and the latency of MI response. This is a randomized, sham-controlled EEG study. Participants were randomly assigned to receive sham (15 subjects) or real high-frequency rTMS (15 subjects). We performed EEG sensor-level, source-level, and connectivity analyses to evaluate the rTMS effects. We revealed that excitatory stimulation of the left DLPFC increases theta-band power in the right precuneus (PrecuneusR) via the functional connectivity between them. The precuneus theta-band power negatively correlates with the latency of the MI response, so the rTMS speeds up the responses in 50% of participants. We suppose that posterior theta-band power reflects attention modulation of sensory processing; therefore, high power may indicate attentive processing and cause faster responses.


Asunto(s)
Corteza Prefontal Dorsolateral , Estimulación Magnética Transcraneal , Humanos , Ritmo Teta , Imágenes en Psicoterapia , Proyectos de Investigación
9.
Micromachines (Basel) ; 14(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37421068

RESUMEN

The complex synaptic connectivity architecture of neuronal networks underlies cognition and brain function. However, studying the spiking activity propagation and processing in heterogeneous networks in vivo poses significant challenges. In this study, we present a novel two-layer PDMS chip that facilitates the culturing and examination of the functional interaction of two interconnected neural networks. We utilized cultures of hippocampal neurons grown in a two-chamber microfluidic chip combined with a microelectrode array. The asymmetric configuration of the microchannels between the chambers ensured the growth of axons predominantly in one direction from the Source chamber to the Target chamber, forming two neuronal networks with unidirectional synaptic connectivity. We showed that the local application of tetrodotoxin (TTX) to the Source network did not alter the spiking rate in the Target network. The results indicate that stable network activity in the Target network was maintained for at least 1-3 h after TTX application, demonstrating the feasibility of local chemical activity modulation and the influence of electrical activity from one network on the other. Additionally, suppression of synaptic activity in the Source network by the application of CPP and CNQX reorganized spatio-temporal characteristics of spontaneous and stimulus-evoked spiking activity in the Target network. The proposed methodology and results provide a more in-depth examination of the network-level functional interaction between neural circuits with heterogeneous synaptic connectivity.

11.
Entropy (Basel) ; 25(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37238500

RESUMEN

We investigated a mathematical model composed of a spiking neural network (SNN) interacting with astrocytes. We analysed how information content in the form of two-dimensional images can be represented by an SNN in the form of a spatiotemporal spiking pattern. The SNN includes excitatory and inhibitory neurons in some proportion, sustaining the excitation-inhibition balance of autonomous firing. The astrocytes accompanying each excitatory synapse provide a slow modulation of synaptic transmission strength. An information image was uploaded to the network in the form of excitatory stimulation pulses distributed in time reproducing the shape of the image. We found that astrocytic modulation prevented stimulation-induced SNN hyperexcitation and non-periodic bursting activity. Such homeostatic astrocytic regulation of neuronal activity makes it possible to restore the image supplied during stimulation and lost in the raster diagram of neuronal activity due to non-periodic neuronal firing. At a biological point, our model shows that astrocytes can act as an additional adaptive mechanism for regulating neural activity, which is crucial for sensory cortical representations.

12.
Nanomaterials (Basel) ; 13(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37242000

RESUMEN

This paper proposes two different approaches to studying resistive switching of oxide thin films using scratching probe nanolithography of atomic force microscopy (AFM). These approaches allow us to assess the effects of memristor size and top-contact thickness on resistive switching. For that purpose, we investigated scratching probe nanolithography regimes using the Taguchi method, which is known as a reliable method for improving the reliability of the result. The AFM parameters, including normal load, scratch distance, probe speed, and probe direction, are optimized on the photoresist thin film by the Taguchi method. As a result, the pinholes with diameter ranged from 25.4 ± 2.2 nm to 85.1 ± 6.3 nm, and the groove array with a depth of 40.5 ± 3.7 nm and a roughness at the bottom of less than a few nanometers was formed. Then, based on the Si/TiN/ZnO/photoresist structures, we fabricated and investigated memristors with different spot sizes and TiN top contact thickness. As a result, the HRS/LRS ratio, USET, and ILRS are well controlled for a memristor size from 27 nm to 83 nm and ranged from ~8 to ~128, from 1.4 ± 0.1 V to 1.8 ± 0.2 V, and from (1.7 ± 0.2) × 10-10 A to (4.2 ± 0.6) × 10-9 A, respectively. Furthermore, the HRS/LRS ratio and USET are well controlled at a TiN top contact thickness from 8.3 ± 1.1 nm to 32.4 ± 4.2 nm and ranged from ~22 to ~188 and from 1.15 ± 0.05 V to 1.62 ± 0.06 V, respectively. The results can be used in the engineering and manufacturing of memristive structures for neuromorphic applications of brain-inspired artificial intelligence systems.

13.
Sci Rep ; 13(1): 6401, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076526

RESUMEN

Coherent activations of brain neuron networks underlie many physiological functions associated with various behavioral states. These synchronous fluctuations in the electrical activity of the brain are also referred to as brain rhythms. At the cellular level, rhythmicity can be induced by various mechanisms of intrinsic oscillations in neurons or the network circulation of excitation between synaptically coupled neurons. One specific mechanism concerns the activity of brain astrocytes that accompany neurons and can coherently modulate synaptic contacts of neighboring neurons, synchronizing their activity. Recent studies have shown that coronavirus infection (Covid-19), which enters the central nervous system and infects astrocytes, can cause various metabolic disorders. Specifically, Covid-19 can depress the synthesis of astrocytic glutamate and gamma-aminobutyric acid. It is also known that in the post-Covid state, patients may suffer from symptoms of anxiety and impaired cognitive functions. We propose a mathematical model of a spiking neuron network accompanied by astrocytes capable of generating quasi-synchronous rhythmic bursting discharges. The model predicts that if the release of glutamate is depressed, normal burst rhythmicity will suffer dramatically. Interestingly, in some cases, the failure of network coherence may be intermittent, with intervals of normal rhythmicity, or the synchronization can disappear.


Asunto(s)
Astrocitos , COVID-19 , Humanos , Astrocitos/metabolismo , COVID-19/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Modelos Neurológicos
14.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36991871

RESUMEN

In this study, we investigated the neural and behavioral mechanisms associated with precision visual-motor control during the learning of sport shooting. We developed an experimental paradigm adapted for naïve individuals and a multisensory experimental paradigm. We showed that in the proposed experimental paradigms, subjects trained well and significantly increased their accuracy. We also identified several psycho-physiological parameters that were associated with shooting outcomes, including EEG biomarkers. In particular, we observed an increase in head-averaged delta and right temporal alpha EEG power before missing shots, as well as a negative correlation between theta-band energies in the frontal and central brain regions and shooting success. Our findings suggest that the multimodal analysis approach has the potential to be highly informative in studying the complex processes involved in visual-motor control learning and may be useful for optimizing training processes.


Asunto(s)
Desempeño Psicomotor , Deportes , Humanos , Desempeño Psicomotor/fisiología , Psicofisiología , Aprendizaje/fisiología , Encéfalo/fisiología , Electroencefalografía
15.
PLoS Comput Biol ; 19(1): e1010792, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36626366

RESUMEN

Modern well-performing approaches to neural decoding are based on machine learning models such as decision tree ensembles and deep neural networks. The wide range of algorithms that can be utilized to learn from neural spike trains, which are essentially time-series data, results in the need for diverse and challenging benchmarks for neural decoding, similar to the ones in the fields of computer vision and natural language processing. In this work, we propose a spike train classification benchmark, based on open-access neural activity datasets and consisting of several learning tasks such as stimulus type classification, animal's behavioral state prediction, and neuron type identification. We demonstrate that an approach based on hand-crafted time-series feature engineering establishes a strong baseline performing on par with state-of-the-art deep learning-based models for neural decoding. We release the code allowing to reproduce the reported results.


Asunto(s)
Benchmarking , Redes Neurales de la Computación , Animales , Algoritmos , Aprendizaje Automático , Neuronas/fisiología
16.
Biomimetics (Basel) ; 7(4)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36546915

RESUMEN

The paper describes a bioinspired propulsion system for a robotic fish model. The system is based on a combination of an elastic chord with a tail fin fixed on it. The tail fin is connected to a servomotor by two symmetric movable thrusts simulating muscle contractions. The propulsion system provides the oscillatory tail movement with controllable amplitude and frequency. Tail oscillations translate into the movement of the robotic fish implementing the thunniform principle of locomotion. The shape of the body and the tail fin of the robotic fish were designed using a computational model simulating a virtual body in an aquatic medium. A prototype of a robotic fish was constructed and tested in experimental conditions. Dependencies of fish velocity on the dynamic characteristics of tail oscillations were analyzed. In particular, it was found that the robot's speed increased as the frequency of tail fin oscillations grew. We also found that for fixed frequencies, an increase in the oscillation amplitude lead to an increase in the swimming speed only up to a certain threshold. Further growth of the oscillation amplitude lead to a weak increase in speed at higher energy costs.

17.
Sci Rep ; 11(1): 22497, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795311

RESUMEN

The dynamics of epidemics depend on how people's behavior changes during an outbreak. At the beginning of the epidemic, people do not know about the virus, then, after the outbreak of epidemics and alarm, they begin to comply with the restrictions and the spreading of epidemics may decline. Over time, some people get tired/frustrated by the restrictions and stop following them (exhaustion), especially if the number of new cases drops down. After resting for a while, they can follow the restrictions again. But during this pause the second wave can come and become even stronger then the first one. Studies based on SIR models do not predict the observed quick exit from the first wave of epidemics. Social dynamics should be considered. The appearance of the second wave also depends on social factors. Many generalizations of the SIR model have been developed that take into account the weakening of immunity over time, the evolution of the virus, vaccination and other medical and biological details. However, these more sophisticated models do not explain the apparent differences in outbreak profiles between countries with different intrinsic socio-cultural features. In our work, a system of models of the COVID-19 pandemic is proposed, combining the dynamics of social stress with classical epidemic models. Social stress is described by the tools of sociophysics. The combination of a dynamic SIR-type model with the classical triad of stages of the general adaptation syndrome, alarm-resistance-exhaustion, makes it possible to describe with high accuracy the available statistical data for 13 countries. The sets of kinetic constants corresponding to optimal fit of model to data were found. These constants characterize the ability of society to mobilize efforts against epidemics and maintain this concentration over time and can further help in the development of management strategies specific to a particular society.


Asunto(s)
COVID-19 , Modelos Biológicos , Pandemias , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , Humanos
18.
Sensors (Basel) ; 21(16)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34451027

RESUMEN

We propose a memristive interface consisting of two FitzHugh-Nagumo electronic neurons connected via a metal-oxide (Au/Zr/ZrO2(Y)/TiN/Ti) memristive synaptic device. We create a hardware-software complex based on a commercial data acquisition system, which records a signal generated by a presynaptic electronic neuron and transmits it to a postsynaptic neuron through the memristive device. We demonstrate, numerically and experimentally, complex dynamics, including chaos and different types of neural synchronization. The main advantages of our system over similar devices are its simplicity and real-time performance. A change in the amplitude of the presynaptic neurogenerator leads to the potentiation of the memristive device due to the self-tuning of its parameters. This provides an adaptive modulation of the postsynaptic neuron output. The developed memristive interface, due to its stochastic nature, simulates a real synaptic connection, which is very promising for neuroprosthetic applications.


Asunto(s)
Redes Neurales de la Computación , Neuronas , Computadores , Electrónica , Procesamiento de Señales Asistido por Computador
19.
Artículo en Inglés | MEDLINE | ID: mdl-34343094

RESUMEN

In this study, we address the issue of whether vibrotactile feedback can enhance the motor cortex excitability translated into the plastic changes in local cortical areas during motor imagery (MI) BCI-based training. For this purpose, we focused on two of the most notable neurophysiological effects of MI - the event-related desynchronization (ERD) level and the increase in cortical excitability assessed with navigated transcranial magnetic stimulation (nTMS). For TMS navigation, we used individual high-resolution 3D brain MRIs. Ten BCI-naive and healthy adults participated in this study. The MI (rest or left/right hand imagery using Graz-BCI paradigm) tasks were performed separately in the presence and absence of feedback. To investigate how much the presence/absence of vibrotactile feedback in MI BCI-based training could contribute to the sensorimotor cortical activations, we compared the MEPs amplitude during MI after training with and without feedback. In addition, the ERD levels during MI BCI-based training were investigated. Our findings provide evidence that applying vibrotactile feedback during MI training leads to (i) an enhancement of the desynchronization level of mu-rhythm EEG patterns over the contralateral motor cortex area corresponding to the MI of the non-dominant hand; (ii) an increase in motor cortical excitability in hand muscle representation corresponding to a muscle engaged by the MI.


Asunto(s)
Interfaces Cerebro-Computador , Excitabilidad Cortical , Neurorretroalimentación , Adulto , Electroencefalografía , Humanos , Imaginación
20.
Brain Sci ; 11(6)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071257

RESUMEN

The structured organization of connectivity in neural networks is associated with highly efficient information propagation and processing in the brain, in contrast with disordered homogeneous network architectures. Using microfluidic methods, we engineered modular networks of cultures using dissociated cells with unidirectional synaptic connections formed by asymmetric microchannels. The complexity of the microchannel geometry defined the strength of the synaptic connectivity and the properties of spiking activity propagation. In this study, we developed an experimental platform to study the effects of synaptic plasticity on a network level with predefined locations of unidirectionally connected cellular assemblies using multisite extracellular electrophysiology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...