Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 553(7686): 101-105, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29258295

RESUMEN

Genomic sequencing has driven precision-based oncology therapy; however, the genetic drivers of many malignancies remain unknown or non-targetable, so alternative approaches to the identification of therapeutic leads are necessary. Ependymomas are chemotherapy-resistant brain tumours, which, despite genomic sequencing, lack effective molecular targets. Intracranial ependymomas are segregated on the basis of anatomical location (supratentorial region or posterior fossa) and further divided into distinct molecular subgroups that reflect differences in the age of onset, gender predominance and response to therapy. The most common and aggressive subgroup, posterior fossa ependymoma group A (PF-EPN-A), occurs in young children and appears to lack recurrent somatic mutations. Conversely, posterior fossa ependymoma group B (PF-EPN-B) tumours display frequent large-scale copy number gains and losses but have favourable clinical outcomes. More than 70% of supratentorial ependymomas are defined by highly recurrent gene fusions in the NF-κB subunit gene RELA (ST-EPN-RELA), and a smaller number involve fusion of the gene encoding the transcriptional activator YAP1 (ST-EPN-YAP1). Subependymomas, a distinct histologic variant, can also be found within the supratetorial and posterior fossa compartments, and account for the majority of tumours in the molecular subgroups ST-EPN-SE and PF-EPN-SE. Here we describe mapping of active chromatin landscapes in 42 primary ependymomas in two non-overlapping primary ependymoma cohorts, with the goal of identifying essential super-enhancer-associated genes on which tumour cells depend. Enhancer regions revealed putative oncogenes, molecular targets and pathways; inhibition of these targets with small molecule inhibitors or short hairpin RNA diminished the proliferation of patient-derived neurospheres and increased survival in mouse models of ependymomas. Through profiling of transcriptional enhancers, our study provides a framework for target and drug discovery in other cancers that lack known genetic drivers and are therefore difficult to treat.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Ependimoma/tratamiento farmacológico , Ependimoma/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes/genética , Terapia Molecular Dirigida , Oncogenes/genética , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Ependimoma/clasificación , Ependimoma/patología , Femenino , Humanos , Ratones , Medicina de Precisión , Interferencia de ARN , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cell Stem Cell ; 21(5): 591-603.e4, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100012

RESUMEN

The blood-tumor barrier (BTB) is a major obstacle for drug delivery to malignant brain tumors such as glioblastoma (GBM). Disrupting the BTB is therefore highly desirable but complicated by the need to maintain the normal blood-brain barrier (BBB). Here we show that targeting glioma stem cell (GSC)-derived pericytes specifically disrupts the BTB and enhances drug effusion into brain tumors. We found that pericyte coverage of tumor vasculature is inversely correlated with GBM patient survival after chemotherapy. Eliminating GSC-derived pericytes in xenograft models disrupted BTB tight junctions and increased vascular permeability. We identified BMX as an essential factor for maintaining GSC-derived pericytes. Inhibiting BMX with ibrutinib selectively targeted neoplastic pericytes and disrupted the BTB, but not the BBB, thereby increasing drug effusion into established tumors and enhancing the chemotherapeutic efficacy of drugs with poor BTB penetration. These findings highlight the clinical potential of targeting neoplastic pericytes to significantly improve treatment of brain tumors.


Asunto(s)
Barrera Hematoencefálica/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioma/tratamiento farmacológico , Glioma/patología , Células Madre Neoplásicas/patología , Pericitos/patología , Adenina/análogos & derivados , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/ultraestructura , Permeabilidad Capilar/efectos de los fármacos , Glioma/ultraestructura , Humanos , Ratones , Células Madre Neoplásicas/metabolismo , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Piperidinas , Pronóstico , Proteínas Tirosina Quinasas/metabolismo , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Análisis de Supervivencia , Uniones Estrechas/metabolismo , Resultado del Tratamiento
3.
Oncotarget ; 6(35): 37300-15, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26510911

RESUMEN

Glioblastoma multiforme (GBM) is the most lethal brain tumor. Tumor relapse in GBM is inevitable despite maximal therapeutic interventions. Glioma stem cells (GSCs) have been found to be critical players in therapeutic resistance and tumor recurrence. Therapeutic drugs targeting GSCs may significantly improve GBM treatment. In this study, we demonstrated that arsenic trioxide (As2O3) effectively disrupted GSCs and inhibited tumor growth in the GSC-derived orthotopic xenografts by targeting the promyelocytic leukaemia (PML). As2O3 treatment induced rapid degradation of PML protein along with severe apoptosis in GSCs. Disruption of the endogenous PML recapitulated the inhibitory effects of As2O3 treatment on GSCs both in vitro and in orthotopic tumors. Importantly, As2O3 treatment dramatically reduced GSC population in the intracranial GBM xenografts and increased the survival of mice bearing the tumors. In addition, As2O3 treatment preferentially inhibited cell growth of GSCs but not matched non-stem tumor cells (NSTCs). Furthermore, As2O3 treatment or PML disruption potently diminished c-Myc protein levels through increased poly-ubiquitination and proteasome degradation of c-Myc. Our study indicated a potential implication of As2O3 in GBM treatment and highlighted the important role of PML/c-Myc axis in the maintenance of GSCs.


Asunto(s)
Antineoplásicos/farmacología , Arsenicales/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Proteínas Nucleares/metabolismo , Óxidos/farmacología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Trióxido de Arsénico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Femenino , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones Endogámicos C57BL , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/trasplante , Proteínas Nucleares/genética , Proteína de la Leucemia Promielocítica , Proteolisis , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Esferoides Celulares , Factores de Tiempo , Factores de Transcripción/genética , Transfección , Carga Tumoral/efectos de los fármacos , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nat Cell Biol ; 17(2): 170-82, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25580734

RESUMEN

Tumour-associated macrophages (TAMs) are enriched in glioblastoma multiformes (GBMs) that contain glioma stem cells (GSCs) at the apex of their cellular hierarchy. The correlation between TAM density and glioma grade suggests a supportive role for TAMs in tumour progression. Here we interrogated the molecular link between GSCs and TAM recruitment in GBMs and demonstrated that GSCs secrete periostin (POSTN) to recruit TAMs. TAM density correlates with POSTN levels in human GBMs. Silencing POSTN in GSCs markedly reduced TAM density, inhibited tumour growth, and increased survival of mice bearing GSC-derived xenografts. We found that TAMs in GBMs are not brain-resident microglia, but mainly monocyte-derived macrophages from peripheral blood. Disrupting POSTN specifically attenuated the tumour-supportive M2 type of TAMs in xenografts. POSTN recruits TAMs through the integrin αvß3 as blocking this signalling by an RGD peptide inhibited TAM recruitment. Our findings highlight the possibility of improving GBM treatment by targeting POSTN-mediated TAM recruitment.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Moléculas de Adhesión Celular/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Macrófagos/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Neoplasias Encefálicas/sangre , Recuento de Células , Línea Celular Tumoral , Proliferación Celular , Factores Quimiotácticos/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Silenciador del Gen , Glioblastoma/sangre , Humanos , Integrina alfaVbeta3/metabolismo , Mediciones Luminiscentes , Ratones Endogámicos C57BL , Monocitos/metabolismo , Células Madre Neoplásicas/patología , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...