Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1284268, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529186

RESUMEN

Background: The hypoglycemic effects of Chinese bayberry leaves proanthocyanidins (BLPs) have been demonstrated. It is unclear, nevertheless, whether BLPs reduced postprandial blood glucose levels by regulating glucose uptake and glucose transport. Method: This study investigated the effect of BLPs (25, 50, and 100 µg/mL) on glucose uptake and glucose transport in human intestinal epithelial cells (Caco-2 cells). The uptake of 2-Deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose (2-NBDG) and disaccharidases activity in Caco-2 cells were measured. The glucose transport ability across the cell membrane was determined using the established Caco-2 monolayer model. The transcript and protein levels of key glucose transporters were analyzed using real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting, respectively. Results: The results showed that BLPs significantly decreased glucose uptake and disaccharidases activity (p < 0.05). Otherwise, BLPs treatment obviously inhibited glucose transport across the Caco-2 monolayer in both simulated-fast (5 mM glucose) and simulated-fed (25 mM glucose) conditions. It was attributed to the suppression of glucose transporter2 (GLUT2) and sodium-dependent glucose cotransporter 1 (SGLT1) by BLPs. BLPs were found to significantly downregulated the transcript level and protein expression of glucose transporters (p < 0.05). Meanwhile, the mRNA expression of phospholipase C (PLC) and protein kinase C (PKC) involved in the signaling pathway associated with glucose transport were decreased by BLPs. Conclusion: These results suggested that BLPs inhibited intestinal glucose transport via inhibiting the expression of glucose transporters. It indicated that BLPs could be potentially used as a functional food in the diet to modulate postprandial hyperglycemia.

2.
Front Cell Infect Microbiol ; 13: 1238543, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094745

RESUMEN

COVID-19 is a disease caused by a virus named SARS-CoV-2. SARS-CoV-2 is a single-stranded positive-sense RNA virus. Reverse transcription quantitative PCR (RT-qPCR) assays are the gold standard molecular test for detection of RNA viruses. The aim of this study was to construct an RNA-positive control based on MS2 phage-like particles (MS2 VLPs) to detect SARS-CoV-2 RNA. pCDFDuet-1 was used as a one-plasmid double-expression system to construct MS2 VLPs containing ssRNA of SARS-CoV-2. The sequence encoding one copy of maturase, His-tag and coat protein dimer was cloned and inserted into MCS1 of the plasmid; the fragment encoding protein N and ORF1ab from SARS-CoV-2 was cloned and inserted into MCS2. The prepared plasmid was transformed into Escherichia coli strain BL2 (DE3), and expression of the construct was induced by 1 mM isopropyl-L-thio-D-galactopyranoside (IPTG) at 30°C for 12 hours. MS2 VLPs were purified and collected with Ni-NTA affinity chromatography columns. The size and shape of the MS2 VLPs were verified by transmission electron microscopy, and the stability of MS2 VLP packaged RNA was evaluated by treatment with RNase A. Effects of storage temperature and buffer on MS2 VLP stability were also investigated. The results showed that SARS-CoV-2 MS2 VLPs could be successfully produced by this one-plasmid double-expression system. MS2 VLPs showed high stability and may be used as a positive control in molecular diagnosis of COVID-19.


Asunto(s)
COVID-19 , ARN Viral , Humanos , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Plásmidos/genética , Reacción en Cadena de la Polimerasa
3.
Appl Environ Microbiol ; 89(10): e0080223, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37800922

RESUMEN

In a previous study, the novel gene cluster cehGHI was found to be involved in salicylate degradation through the CoA-mediated pathway in Rhizobium sp. strain X9 (Mol Microbiol 116:783-793, 2021). In this study, an IclR family transcriptional regulator CehR4 was identified. In contrast to other regulators involved in salicylate degradation, cehR4 forms one operon with the gentisyl-CoA thioesterase gene cehI, while cehG and cehH (encoding salicylyl-CoA ligase and salicylyl-CoA hydroxylase, respectively) form another operon. cehGH and cehIR4 are divergently transcribed, and their promoters overlap. The results of the electrophoretic mobility shift assay and DNase I footprinting showed that CehR4 binds to the 42-bp motif between genes cehH and cehI, thus regulating transcription of cehGH and cehIR4. The repeat sequences IR1 (5'-TTTATATAAA-3') and IR2 (5'-AATATAGAAA-3') in the motif are key sites for CehR4 binding. The arrangement of cehGH and cehIR4 and the conserved binding motif of CehR4 were also found in other bacterial genera. The results disclose the regulatory mechanism of salicylate degradation through the CoA pathway and expand knowledge about the systems controlled by IclR family transcriptional regulators.IMPORTANCEThe long-term residue of aromatic compounds in the environment has brought great threat to the environment and human health. Microbial degradation plays an important role in the elimination of aromatic compounds in the environment. Salicylate is a common intermediate metabolite in the degradation of various aromatic compounds. Recently, Rhizobium sp. strain X9, capable of degrading the pesticide carbaryl, was isolated from carbaryl-contaminated soil. Salicylate is the intermediate metabolite that appeared during the degradation of carbaryl, and a novel salicylate degradation pathway and the involved gene cluster cehGHIR4 have been identified. This study identified and characterized the IclR transcription regulator CehR4 that represses transcription of cehGHIR4 gene cluster. Additionally, the genetic arrangements of cehGH and cehIR4 and the binding sites of CehR4 were also found in other bacterial genera. This study provides insights into the biodegradation of salicylate and provides an application in the bioremediation of aromatic compound-contaminated environments.


Asunto(s)
Rhizobium , Salicilatos , Humanos , Salicilatos/metabolismo , Carbaril , Proteínas Bacterianas/metabolismo , Familia de Multigenes , Rhizobium/genética , Rhizobium/metabolismo , Regulación Bacteriana de la Expresión Génica
4.
Vaccines (Basel) ; 11(8)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37631863

RESUMEN

The Group ACYW135 meningococcal polysaccharide vaccine (MPV-ACYW135) is a classical common vaccine used to prevent Neisseria meningitidis serogroups A, C, Y, and W135, but studies on the vaccine at the transcriptional level are still limited. In the present study, mRNAs and lncRNAs related to immunity were screened from the spleens of mice inoculated with MPV-ACYW135 and compared with the control group to identify differentially expressed mRNAs and lncRNAs in the immune response. The result revealed 34375 lncRNAs and 41321 mRNAs, including 405 differentially expressed (DE) lncRNAs and 52 DE mRNAs between the MPV group and the control group. Results of GO and KEGG enrichment analysis turned out that the main pathways related to the immunity of target genes of those DE mRNAs and DE lncRNAs were largely associated with positive regulation of T cell activation, CD8-positive immunoglobulin production in mucosal tissue, alpha-beta T cell proliferation, negative regulation of CD4-positive, and negative regulation of interleukin-17 production, suggesting that the antigens of MPV-ACYW135 capsular polysaccharide might activate T cell related immune reaction in the vaccine inoculation. In addition, it was noted that Bach2 (BTB and CNC homolog 2), the target gene of lncRNA MSTRG.17645, was involved in the regulation of immune response in MPV-ACYW135 vaccination. This study provided a preliminary catalog of both mRNAs and lncRNAs associated with the proliferation and differentiation of body immune cells, which was worthy of further research to enhance the understanding of the biological immune process regulated by MPV-ACYW135.

5.
Int J Biol Macromol ; 248: 125935, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37482168

RESUMEN

The effect of proanthocyanidins (PAs) from Chinese bayberry leaves (BLPs), grape seeds (GSPs), peanut skins (PSPs) and pine barks (PBPs) on physicochemical properties, structure and in-vitro digestibility of gelatinized maize starch was investigated. The results showed that all PAs remarkably retarded starch digestibility, meanwhile, BLPs highlighted superiority in increasing resistant starch content from 31.29 ± 1.12 % to 68.61 ± 1.15 %. The iodine-binding affinity analysis confirmed the interaction between PAs and starch, especially the stronger binding of BLPs to amylose, which was driven by non-covalent bonds supported by XRD and FT-IR analysis. Further, we found that PAs altered the rheological properties, thermal properties and morphology structure of starch. In brief, PAs induced larger consistency, poorer flow ability, lower gelatinization temperatures and melting enthalpy change (ΔH) of starch paste. SEM and CLSM observation demonstrated that PAs facilitated starch aggregation. Our results indicated that PAs especially BLPs could be considered as potential additives to modify starch in food industry.


Asunto(s)
Proantocianidinas , Proantocianidinas/química , Zea mays/química , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/química , Amilosa/química
6.
Anim Biotechnol ; 34(9): 4927-4937, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37199180

RESUMEN

This study was to investigate the correlations of myogenic differentiation 1 (MYOD1) gene polymorphisms with carcass traits and its expression with breast muscle development in pigeons. Four SNPs were found in the pigeon MYOD1 gene. Correlation analysis showed that individuals with AA genotype at both SNPs g.2967A > G (p < .01) and g.3044G > A (p < .05) have significantly higher live weight (LW), carcass weight (CW), semi-eviscerated weight (SEW), eviscerated weight (EW) and breast muscle weight (BMW). Moreover, the two SNPs also had the same significant effects on MYOD1 mRNA expression levels in breast muscle of pigeons, ie, the AA genotype showed higher MYOD1 mRNA expression levels. The diameter and cross-section area of muscle fibers continuously increased from 0w to 4w (p < .05), accompanied with the increasing expression of MYOD1 gene, while the density decreased (p < .05) dramatically from 0w to 1w and continuously fell over in the next few weeks (p > .05). What's more, the expression level of MYOD1 gene was positively correlated with a diameter (r = 0.937, p < .05) and cross-sectional area (r = 0.956, p < .01) of myofiber, and negatively correlated with density (r = -0.769, p < .01). The results showed that individuals with AA genotype at both SNPs g.2967A > G and g.3044G > A have showed higher carcass traits (LW, CW, SEW, EW, and BMW) and higher MYOD1 mRNA expression level in breast muscle than AB and BB genotypes. Moreover, the expression level of MYOD1 gene was closely correlated with muscle characteristic traits, indicating variants of MYOD1 gene was closely related to muscle development and could be a potential candidate gene in marker-assisted selection of pigeons.


Asunto(s)
Columbidae , Carne , Humanos , Animales , Columbidae/genética , Fenotipo , Genotipo , Músculos , ARN Mensajero , Polimorfismo de Nucleótido Simple/genética
7.
Appl Environ Microbiol ; 89(6): e0212122, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37191535

RESUMEN

In our previous study, the phenazine-1-carboxylic acid (PCA) 1,2-dioxygenase gene cluster (pcaA1A2A3A4 cluster) in Sphingomonas histidinilytica DS-9 was identified to be responsible for the conversion of PCA to 1,2-dihydroxyphenazine (Ren Y, Zhang M, Gao S, Zhu Q, et al. 2022. Appl Environ Microbiol 88:e00543-22). However, the regulatory mechanism of the pcaA1A2A3A4 cluster has not been elucidated yet. In this study, the pcaA1A2A3A4 cluster was found to be transcribed as two divergent operons: pcaA3-ORF5205 (named A3-5205 operon) and pcaA1A2-ORF5208-pcaA4-ORF5210 (named A1-5210 operon). The promoter regions of the two operons were overlapped. PcaR acts as a transcriptional repressor of the pcaA1A2A3A4 cluster, and it belongs to GntR/FadR family transcriptional regulator. Gene disruption of pcaR can shorten the lag phase of PCA degradation. The results of electrophoretic mobility shift assay and DNase I footprinting showed that PcaR binds to a 25-bp motif in the ORF5205-pcaA1 intergenic promoter region to regulate the expression of two operons. The 25-bp motif covers the -10 region of the promoter of A3-5205 operon and the -35 region and -10 region of the promoter of A1-5210 operon. The TNGT/ANCNA box within the motif was essential for PcaR binding to the two promoters. PCA acted as an effector of PcaR, preventing it from binding to the promoter region and repressing the transcription of the pcaA1A2A3A4 cluster. In addition, PcaR represses its own transcription, and this repression can be relieved by PCA. This study reveals the regulatory mechanism of PCA degradation in strain DS-9, and the identification of PcaR increases the variety of regulatory model of the GntR/FadR-type regulator. IMPORTANCE Sphingomonas histidinilytica DS-9 is a phenazine-1-carboxylic acid (PCA)-degrading strain. The 1,2-dioxygenase gene cluster (pcaA1A2A3A4 cluster, encoding dioxygenase PcaA1A2, reductase PcaA3, and ferredoxin PcaA4) is responsible for the initial degradation step of PCA and widely distributed in Sphingomonads, but its regulatory mechanism has not been investigated yet. In this study, a GntR/FadR-type transcriptional regulator PcaR repressing the transcription of pcaA1A2A3A4 cluster and pcaR gene was identified and characterized. The binding site of PcaR in ORF5205-pcaA1 intergenic promoter region contains a TNGT/ANCNA box, which is important for the binding. These findings enhance our understanding of the molecular mechanism of PCA degradation.


Asunto(s)
Dioxigenasas , Dioxigenasas/genética , Dioxigenasas/metabolismo , Proteínas Bacterianas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Familia de Multigenes , Regulación Bacteriana de la Expresión Génica , Operón
8.
Vaccines (Basel) ; 11(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36992112

RESUMEN

The 23-valent pneumococcal vaccine (PPV23) is a classical common vaccine used to prevent pneumococcal disease. In past decades, it was thought that vaccination with this vaccine induces humoral immunity, thereby reducing the disease associated with infection with 23 common serotypes of Streptococcus pneumoniae (Sp). However, for this polysaccharide vaccine, the mechanism of immune response at the transcriptional level has not been fully studied. To identify the lncRNAs (long noncoding RNAs) and mRNAs in spleens related to immunity after PPV23 vaccination in mice, high-throughput RNA sequencing of spleens between a PPV23 treatment group and a control group were performed and evaluated in this study. The RNA-seq results identified a total of 41,321 mRNAs and 34,375 lncRNAs, including 55 significantly differentially expressed (DE) mRNAs and 389 DE lncRNAs (p < 0.05) between the two groups. GO and KEGG annotation analysis indicated that the target genes of DE lncRNAs and DE mRNAs were related to T-cell costimulation, positive regulation of alpha-beta T-cell differentiation, the CD86 biosynthetic process, and the PI3K-Akt signaling pathway, indicating that the polysaccharide component antigens of PPV23 might activate a cellular immune response during the PPV23 immunization process. Moreover, we found that Trim35 (tripartite motif containing 35), a target gene of lncRNA MSTRG.9127, was involved in regulating immunity. Our study provides a catalog of lncRNAs and mRNAs associated with immune cells' proliferation and differentiation, and they deserve further study to deepen the understanding of the biological processes in the regulation of PPV23 during humoral immunity and cellular immunity.

9.
Environ Microbiol ; 24(10): 4803-4817, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35880585

RESUMEN

Strains Rhodococcus qingshengii djl-6 and Rhodococcus jialingiae djl-6-2 both harbour the typical carbendazim degradation pathway with the hydrolysis of carbendazim to 2-aminobenzimidazole (2-AB) as the initial step. However, the enzymes involved in this process are still unknown. In this study, the previous reported carbendazim hydrolase MheI was found in strain djl-6, but not in strain djl-6-2, then another carbendazim hydrolase CbmA was obtained by a four-step purification strategy from strain djl-6-2. CbmA was classified as a member of the amidase signature superfamily with conserved catalytic site residues Ser157, Ser181, and Lys82, while MheI was classified as a member of the Abhydrolase superfamily with conserved catalytic site residues Ser77 and His224. The catalytic efficiency (kcat /Km ) of MheI (24.0-27.9 µM-1  min-1 ) was 200 times more than that of CbmA (0.032-0.21 µM-1  min-1 ). The mheI gene (plasmid encoded) was highly conserved (>99% identity) in the strains from different bacterial genera and its plasmid encoded flanked by mobile genetic elements. The cmbA gene was highly conserved only in strains of the genus Rhodococcus and it was chromosomally encoded. Overall, the function, diversity, and distribution of carbendazim hydrolases MheI and CbmA will provide insights into the microbial degradation of carbendazim.


Asunto(s)
Hidrolasas , Rhodococcus , Amidohidrolasas/metabolismo , Bencimidazoles , Carbamatos/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo
10.
Appl Environ Microbiol ; 88(11): e0054322, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35579476

RESUMEN

Phenazines are an important class of secondary metabolites and are primarily named for their heterocyclic phenazine cores, including phenazine-1-carboxylic acid (PCA) and its derivatives, such as phenazine-1-carboxamide (PCN) and pyocyanin (PYO). Although several genes involved in the degradation of PCA and PYO have been reported so far, the genetic foundations of PCN degradation remain unknown. In this study, a PCN-degrading bacterial strain, Sphingomonas histidinilytica DS-9, was isolated. The gene pcnH, encoding a novel amidase responsible for the initial step of PCN degradation, was cloned by genome comparison and subsequent experimental validation. PcnH catalyzed the hydrolysis of the amide bond of PCN to produce PCA, which shared low identity (only 26 to 33%) with reported amidases. The Km and kcat values of PcnH for PCN were 33.22 ± 5.70 µM and 18.71 ± 0.52 s-1, respectively. PcnH has an Asp-Lys-Cys motif, which is conserved among amidases of the isochorismate hydrolase-like (IHL) superfamily. The replacement of Asp37, Lys128, and Cys163 with alanine in PcnH led to the complete loss of enzymatic activity. Furthermore, the genes pcaA1A2A3A4 and pcnD were found to encode PCA 1,2-dioxygenase and 1,2-dihydroxyphenazine (2OHPC) dioxygenase, which were responsible for the subsequent degradation steps of PCN. The PCN-degradative genes were highly conserved in some bacteria of the genus Sphingomonas, with slight variations in the sequence identities. IMPORTANCE Phenazines have been widely acknowledged as a natural antibiotic for more than 150 years, but their degradation mechanisms are still not completely elucidated. Compared with the studies on the degradation mechanism of PCA and PYO, little is known regarding PCN degradation by far. Previous studies have speculated that its initial degradation step may be catalyzed by an amidase, but no further studies have been conducted. This study identified a novel amidase, PcnH, that catalyzed the hydrolysis of PCN to PCA. In addition, the PCA 1,2-dioxygenase PcaA1A2A3A4 and 2OHPC dioxygenase PcnD were also found to be involved in the subsequent degradation steps of PCN in S. histidinilytica DS-9. And the genes responsible for PCN catabolism are highly conserved in some strains of Sphingomonas. These results deepen our understanding of the PCN degradation mechanism.


Asunto(s)
Dioxigenasas , Sphingomonas , Amidohidrolasas , Fenazinas/metabolismo , Piocianina , Sphingomonas/metabolismo
11.
J Colloid Interface Sci ; 616: 12-22, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35189500

RESUMEN

Natural biomass materials are endowed with good potential for pollutant remediation due to low cost, environment friendliness and easy accessibility. In this work, an efficient biomass-based adsorbent named g-PS was fabricated by free radical graft copolymerization of peanut shell with methacrylic acid and N,N'-methylenebis(acrylamide). The structural and morphological properties of g-PS were characterized and analyzed. The effectiveness of g-PS as adsorbent to remove cationic dye and heavy metal pollutants (i.e. methylene blue (MB), basic red 46 (BR) and Cd(II)) from water was evaluated. The batch adsorption tests indicated that g-PS showed rapid removal rates for MB, BR and Cd(II), with the adsorption equilibriums achieved within 30 min. The adsorption processes of three compounds were more suitable to be described by Langmuir and pseudo-second-order models. The maximum adsorption capacities were 538.34 mg/g for MB, 687.52 mg/g for BR and 62.01 mg/g for Cd(II) at 298 K. The coadsorption experiments in the mixed system indicated that g-PS was still effective for simultaneous removal of both BR and Cd(II). Additionally, g-PS exhibited satisfactory removal performance even after seven repeated uses. The as-prepared g-PS can be used as a promising adsorbent candidate to dispose wastewater containing cationic dyes and heavy metals.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Biomasa , Cadmio , Cationes , Colorantes/química , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno/química , Contaminantes Químicos del Agua/química
12.
Environ Res ; 208: 112706, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35031339

RESUMEN

Dimethachlon, a broad-spectrum dicarboximide fungicide, poses a hazard to the safety of human and ecosystem due to its residue in the environment. A high-efficient dimethachlon degrading bacteria JH-1 belonging to Paenarthrobacter sp. was isolated and characterized. Strain JH-1 can utilize high concentration of dimethachlon as sole carbon source for growth and degrade 98.53% of 300 mg·L-1 dimethachlon within 72 h. Crude enzyme of strain JH-1 could degrade 99.76% of 100 mg·L-1 dimethachlon within 2 h. The optimum degradation condition of dimethachlon by strain JH-1 was at 35 °C and pH 7.0. Dimethachlon was degraded in Paenarthrobacter sp. JH-1 as following: it was firstly converted to 4-(3,5-dichloroanilino)-4-oxobutanoic acid and then subjected to the hydrolysis to 3,5-dichloroaniline and succinic acid, the latter was further degraded. Dimethachlon inhibited the growth of Chlorella ellipsoidea, while Paenarthrobacter sp. JH-1 could degrade dimethachlon to relieve its toxicity. This work facilitates our knowledge of the degradation mechanism of dimethachlon and offers potential resource of microbial strains for the bioremediation of dimethachlon-contaminated environments in the future.


Asunto(s)
Chlorella , Bacterias , Biodegradación Ambiental , Clorobencenos , Ecosistema , Humanos , Succinimidas
13.
Appl Environ Microbiol ; 88(4): e0206021, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936841

RESUMEN

Previously, a LysR family transcriptional regulator, McbG, that activates the mcbBCDEF gene cluster involved in the upstream pathway (from carbaryl to salicylate) of carbaryl degradation in Pseudomonas sp. strain XWY-1 was identified by us (Z. Ke, Y. Zhou, W. Jiang, M. Zhang, et al., Appl Environ Microbiol 87:e02970-20, 2021, https://doi.org/10.1128/AEM.02970-20). In this study, we identified McbH and McbN, which activate the mcbIJKLM cluster (responsible for the midstream pathway, from salicylate to gentisate) and the mcbOPQ cluster (responsible for the downstream pathway, from gentisate to pyruvate and fumarate), respectively. They both belong to the LysR family of transcriptional regulators. Gene disruption and complementation study reveal that McbH is essential for transcription of the mcbIJKLM cluster in response to salicylate and McbN is indispensable for the transcription of the mcbOPQ cluster in response to gentisate. The results of electrophoretic mobility shift assay (EMSA) and DNase I footprinting showed that McbH binds to the 52-bp motif in the mcbIJKLM promoter area and McbN binds to the 58-bp motif in the mcbOPQ promoter area. The key sequence of McbH binding to the mcbIJKLM promoter is a 13-bp motif that conforms to the typical characteristics of the LysR family. However, the 12-bp motif that is different from the typical characteristics of the LysR family regulator binding site sequence is identified as the key sequence for McbN to bind to the mcbOPQ promoter. This study revealed the regulatory mechanisms for the midstream and downstream pathways of carbaryl degradation in strain XWY-1 and further our knowledge of (and the size of) the LysR transcription regulator family. IMPORTANCE The enzyme-encoding genes involved in the complete degradation pathway of carbaryl in Pseudomonas sp. strain XWY-1 include mcbABCDEF, mcbIJKLM, and mcbOPQ. Previous studies demonstrated that the mcbA gene, responsible for hydrolysis of carbaryl to 1-naphthol, is constitutively expressed and that the transcription of mcbBCDEF was regulated by McbG. However, the transcription regulation mechanisms of mcbIJKLM and mcbOPQ have not been investigated yet. In this study, we identified two LysR-type transcriptional regulators, McbH and McbN, which activate the mcbIJKLM cluster (responsible for the degradation of salicylate to gentisate) and the mcbOPQ cluster (responsible for the degradation of gentisate to pyruvate and fumarate), respectively. The 13-bp motif is critical for McbH to bind to the promoter of mcbIJKLM, and 12-bp motif different from the typical characteristics of the LysR-type transcriptional regulator (LTTR) binding sequence affects the binding of McbN to the promoter. These findings help to expand the understanding of the regulatory mechanism of microbial degradation of carbaryl.


Asunto(s)
Carbaril , Pseudomonas , Proteínas Bacterianas/metabolismo , Carbaril/metabolismo , Regulación Bacteriana de la Expresión Génica , Gentisatos/metabolismo , Operón , Pseudomonas/genética , Pseudomonas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Microb Pathog ; 161(Pt A): 105254, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34687840

RESUMEN

Colletotrichum gloeosporioides is the main pathogen causing rubber anthracnose, which brings huge economic loss to the natural rubber industry. Heterotrimeric G proteins play a vital role in signal transduction in filamentous fungi, and G alpha subunits are the major component of G proteins. In this study, we characterize a group I Gα subunit CgGa1 in C. gloeosporioides as a homolog of MagB in Pyricularia oryzae. CgGa1 encodes a 353-amino acid protein and has a G_alpha domain. Deletion of CgGa1 results in reduced vegetative growth and conidia yield, and the mutant cannot produce a fruiting body. The CgGa1 deletion mutant also exhibits decreased conidial germination and appressorium formation significantly. Moreover, the mutant has an obvious deficiency in penetration and loses its virulence completely. Transcriptome analysis showed that CgGa1 could affect the expression of many genes related to carbohydrate metabolism, amino acid metabolism and signal transduction, etc. In conclusion, CgGa1 regulates growth, asexual and sexual sporulation, appressorium formation, penetration and pathogenicity of C. gloeosporioides.


Asunto(s)
Colletotrichum , Subunidades alfa de la Proteína de Unión al GTP , Colletotrichum/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas , Virulencia
15.
Ecotoxicol Environ Saf ; 224: 112666, 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34416635

RESUMEN

Carbaryl is the representative of carbamate insecticide. As an acetylcholinesterase inhibitor, it poses potential threat to humans and other non-target organisms. Agrobacterium sp. XWY-2, which could grow with carbaryl as the sole carbon source, was isolated and characterized. The carH gene, encoding a carbaryl hydrolase, was cloned from strain XWY-2 and expressed in Escherichia coli BL21 (DE3). CarH was able to hydrolyze carbamate pesticides including carbaryl, carbofuran, isoprocarb, propoxur and fenobucarb efficiently, while it hydrolyzed oxamyl and aldicarb poorly. The optimal pH of CarH was 8.0 and the optimal temperature was 30 â„ƒ. The apparent Km and kcat values of CarH for carbaryl were 38.01 ± 2.81 µM and 0.33 ± 0.01 s-1, respectively. The point mutation experiment demonstrated that His341, His343, His346, His416 and D437 are the key sites for CarH to hydrolyze carbaryl.

16.
Mol Microbiol ; 116(3): 783-793, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34121246

RESUMEN

Salicylate is a typical aromatic compound widely distributed in nature. Microbial degradation of salicylate has been well studied and salicylate hydroxylases play essential roles in linking the peripheral and ring-cleavage catabolic pathways. The direct hydroxylation of salicylate catalyzed by salicylate-1-hydroxylase or salicylate-5-hydroxylase has been well studied. However, the CoA mediated salicylate 5-hydroxylation pathway has not been characterized in detail. Here, we elucidate the molecular mechanism of the reaction in the conversion of salicylate to gentisate in the carbaryl-degrading strain Rhizobium sp. X9. Three enzymes (salicylyl-CoA ligase CehG, salicylyl-CoA hydroxylase CehH and gentisyl-CoA thioesterase CehI) catalyzed the conversion of salicylate to gentisate via a route, including CoA thioester formation, hydroxylation and thioester hydrolysis. Further analysis indicated that genes cehGHI are also distributed in other bacteria from terrestrial environment and marine sediments. These genomic evidences highlight the role of this salicylate degradation pathway in the carbon cycle of soil organic compounds and marine sediments. Our findings of this three-step strategy enhanced the current understanding of CoA mediated degradation of salicylate.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Coenzima A/metabolismo , Rhizobium/enzimología , Rhizobium/genética , Rhizobium/metabolismo , Salicilatos/metabolismo , Prueba de Complementación Genética , Genoma Bacteriano , Gentisatos/metabolismo , Ligasas/genética , Ligasas/metabolismo , Redes y Vías Metabólicas , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Microbiología del Suelo , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
17.
Environ Microbiol ; 23(6): 3265-3273, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33939873

RESUMEN

Pymetrozine is a synthetic pesticide that can be utilized as the sole carbon source by Pseudomonas sp. strain BYT-1. However, the genes involved in the degradation of pymetrozine remain unknown. We used transposon mutagenesis to create a mutant that unable to hydrolyze pymetrozine. The transposon interrupted the gene pyzH, which was cloned by self-formed adaptor PCR. PyzH hydrolyzed the C=N double bond of pymetrozine to produce 4-amino-6-methyl-4,5-dihydro-2H-[1,2,4]triazin-3-one (AMDT) and nicotinaldehyde; the latter inhibits PyzH activity. PyzH can completely hydrolyze pymetrozine in the presence of dehydrogenase ORF6, which can convert nicotinaldehyde into nicotinic acid and relieve the inhibition. H2 18 O-labeling experiments showed that the oxygen atom of nicotinaldehyde came from water instead of oxygen. PyzH homologous genes were also found in other soil isolates able to degrade pymetrozine.


Asunto(s)
Hidrolasas , Pseudomonas , Catálisis , Pseudomonas/genética , Triazinas
18.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33741617

RESUMEN

Strobilurin fungicides are widely used in agricultural production due to their broad-spectrum and fungal mitochondrial inhibitory activities. However, their massive application has restrained the growth of eukaryotic algae and increased collateral damage in freshwater systems, notably harmful cyanobacterial blooms (HCBs). In this study, a strobilurin fungicide-degrading strain, Hyphomicrobium sp. strain DY-1, was isolated and characterized successfully. Moreover, a novel esterase gene, strH, responsible for the de-esterification of strobilurin fungicides, was cloned, and the enzymatic properties of StrH were studied. For trifloxystrobin, StrH displayed maximum activity at 50°C and pH 7.0. The catalytic efficiencies (kcat/Km ) of StrH for different strobilurin fungicides were 196.32 ± 2.30 µM-1 · s-1 (trifloxystrobin), 4.64 ± 0.05 µM-1 · s-1 (picoxystrobin), 2.94 ± 0.02 µM-1 · s-1 (pyraclostrobin), and (2.41 ± 0.19)×10-2 µM-1 · s-1 (azoxystrobin). StrH catalyzed the de-esterification of a variety of strobilurin fungicides, generating the corresponding parent acid to achieve the detoxification of strobilurin fungicides and relieve strobilurin fungicide growth inhibition of Chlorella This research will provide insight into the microbial remediation of strobilurin fungicide-contaminated environments.IMPORTANCE Strobilurin fungicides have been widely acknowledged as an essential group of pesticides worldwide. So far, their residues and toxic effects on aquatic organisms have been reported in different parts of the world. Microbial degradation can eliminate xenobiotics from the environment. Therefore, the degradation of strobilurin fungicides by microorganisms has also been reported. However, little is known about the involvement of enzymes or genes in strobilurin fungicide degradation. In this study, a novel esterase gene responsible for the detoxification of strobilurin fungicides, strH, was cloned in the newly isolated strain Hyphomicrobium sp. DY-1. This degradation process detoxifies the strobilurin fungicides and relieves their growth inhibition of Chlorella.


Asunto(s)
Esterasas/metabolismo , Fungicidas Industriales/metabolismo , Hyphomicrobium/metabolismo , Estrobilurinas/metabolismo , Hyphomicrobium/enzimología , Inactivación Metabólica
19.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33579686

RESUMEN

Although enzyme-encoding genes involved in the degradation of carbaryl have been reported in Pseudomonas sp. strain XWY-1, no regulator has been identified yet. In the mcbABCDEF cluster responsible for the upstream pathway of carbaryl degradation (from carbaryl to salicylate), the mcbA gene is constitutively expressed, while mcbBCDEF is induced by 1-naphthol, the hydrolysis product of carbaryl by McbA. In this study, we identified McbG, a transcriptional activator of the mcbBCDEF cluster. McbG is a 315-amino-acid protein with a molecular mass of 35.7 kDa. It belongs to the LysR family of transcriptional regulators and shows 28.48% identity to the pentachlorophenol (PCP) degradation transcriptional activation protein PcpR from Sphingobium chlorophenolicum ATCC 39723. Gene disruption and complementation studies reveal that mcbG is essential for transcription of the mcbBCDEF cluster in response to 1-naphthol in strain XWY-1. The results of the electrophoretic mobility shift assay (EMSA) and DNase I footprinting show that McbG binds to the 25-bp motif in the mcbBCDEF promoter area. The palindromic sequence TATCGATA within the motif is essential for McbG binding. The binding site is located between the -10 box and the transcription start site. In addition, McbG can repress its own transcription. The EMSA results show that a 25-bp motif in the mcbG promoter area plays an important role in McbG binding to the promoter of mcbG This study reveals the regulatory mechanism for the upstream pathway of carbaryl degradation in strain XWY-1. The identification of McbG increases the variety of regulatory models within the LysR family of transcriptional regulators.IMPORTANCEPseudomonas sp. strain XWY-1 is a carbaryl-degrading strain that utilizes carbaryl as the sole carbon and energy source for growth. The functional genes involved in the degradation of carbaryl have already been reported. However, the regulatory mechanism has not been investigated yet. Previous studies demonstrated that the mcbA gene, responsible for hydrolysis of carbaryl to 1-naphthol, is constitutively expressed in strain XWY-1. In this study, we identified a LysR-type transcriptional regulator, McbG, which activates the mcbBCDEF gene cluster responsible for the degradation of 1-naphthol to salicylate and represses its own transcription. The DNA binding site of McbG in the mcbBCDEF promoter area contains a palindromic sequence, which affects the binding of McbG to DNA. These findings enhance our understanding of the mechanism of microbial degradation of carbaryl.


Asunto(s)
Proteínas Bacterianas/genética , Carbaril/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Factores de Transcripción/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Familia de Multigenes , Factores de Transcripción/metabolismo
20.
J Hazard Mater ; 403: 123677, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32835992

RESUMEN

The cehA gene is the earliest reported and most widely found carbaryl hydrolase gene. CehA detoxifies carbaryl and other carbamate pesticides via de-esterification. Currently, there is no systematic research available on substrate preference or the mechanism of CehA action in different hosts. In this study, we found that CehA from different hosts is highly conserved, with more than 99% amino acid sequence similarity, and that transposable elements exist in both the upstream and downstream regions of cehA. By introducing point mutations into the cehA gene of Sphingobium sp. CFD-1, we obtained and heterologously expressed all reported CehA(CehAS) encoding genes. Assays to determine enzymatic properties and substrate profiles of CehAS showed that each CehA has a significant substrate preference for different carbamate insecticides. Specifically, CehA152Phe/Leu determines the catalytic preference for bicyclic carbamate substrates (carbofuran, carbaryl), while CehA494Thr/Ala and 570Thr/Ile determine the preference for monocyclic carbamate substrates (isoprocarb, propoxur) and linear carbamate substrates (oxamyl, aldicarb), respectively. Considering the existence of transposable elements in the flanking regions of cehA, we speculate that the cehA hosts may have acquired the hydrolysis ability, as well as substrate preference for carbamate pesticides, through horizontal gene transfer and genetic copying errors.


Asunto(s)
Carbofurano , Insecticidas , Carbaril , Hidrolasas de Éster Carboxílico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...