Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 14(1)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38255718

RESUMEN

Organic compounds, such as amino acids, are essential for the origin of life, and they may have been delivered to the prebiotic Earth from extra-terrestrial sources, such as carbonaceous chondrites. In the parent bodies of carbonaceous chondrites, the radioactive decays of short-lived radionuclides, such as 26Al, cause the melting of ice, and aqueous alteration occurs in the early stages of solar system formation. Many experimental studies have shown that complex organic matter, including amino acids and high-molecular-weight organic compounds, is produced by such hydrothermal processes. On the other hand, radiation, particularly gamma rays from radionuclides, can contribute to the formation of amino acids from simple molecules such as formaldehyde and ammonia. In this study, we investigated the details of gamma-ray-induced amino acid formation, focusing on the effects of different starting materials on aqueous solutions of formaldehyde, ammonia, methanol, and glycolaldehyde with various compositions, as well as hexamethylenetetramine. Alanine and glycine were the most abundantly formed amino acids after acid hydrolysis of gamma-ray-irradiated products. Amino acid formation increased with increasing gamma-ray irradiation doses. Lower amounts of ammonia relative to formaldehyde produced more amino acids. Glycolaldehyde significantly increased amino acid yields. Our results indicated that glycolaldehyde formation from formaldehyde enhanced by gamma rays is key for the subsequent production of amino acids.

2.
Sci Adv ; 9(50): eadh7845, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100590

RESUMEN

Amino acids in carbonaceous chondrites may have seeded the origin of life on Earth and possibly elsewhere. Recently, the return samples from a C-type asteroid Ryugu were found to contain amino acids with a similar distribution to Ivuna-type CI chondrites, suggesting the potential of amino acid abundances as molecular descriptors of parent body geochemistry. However, the chemical mechanisms responsible for the amino acid distributions remain to be elucidated particularly at low temperatures (<50°C). Here, we report that two representative proteinogenic amino acids, aspartic acid and glutamic acid, decompose to ß-alanine and γ-aminobutyric acid, respectively, under simulated geoelectrochemical conditions at 25°C. This low-temperature conversion provides a plausible explanation for the enrichment of these two n-ω-amino acids compared to their precursors in heavily aqueously altered CI chondrites and Ryugu's return samples. The results suggest that these heavily aqueously altered samples originated from the water-rich mantle of their water/rock differentiated parent planetesimals where protein α-amino acids were decomposed.


Asunto(s)
Ácido Aspártico , Meteoroides , Ácido Glutámico , Aminoácidos/química , Agua
3.
Nat Rev Chem ; 7(9): 598-599, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37596404
4.
Life (Basel) ; 13(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37240748

RESUMEN

Life most likely started during the Hadean Eon; however, the environmental conditions which contributed to the complexity of its chemistry are poorly known. A better understanding of various environmental conditions, including global (heliospheric) and local (atmospheric, surface, and oceanic), along with the internal dynamic conditions of the early Earth, are required to understand the onset of abiogenesis. Herein, we examine the contributions of galactic cosmic rays (GCRs) and solar energetic particles (SEPs) associated with superflares from the young Sun to the formation of amino acids and carboxylic acids in weakly reduced gas mixtures representing the early Earth's atmosphere. We also compare the products with those introduced by lightning events and solar ultraviolet light (UV). In a series of laboratory experiments, we detected and characterized the formation of amino acids and carboxylic acids via proton irradiation of a mixture of carbon dioxide, methane, nitrogen, and water in various mixing ratios. These experiments show the detection of amino acids after acid hydrolysis when 0.5% (v/v) of initial methane was introduced to the gas mixture. In the set of experiments with spark discharges (simulation of lightning flashes) performed for the same gas mixture, we found that at least 15% methane was required to detect the formation of amino acids, and no amino acids were detected in experiments via UV irradiation, even when 50% methane was used. Carboxylic acids were formed in non-reducing gas mixtures (0% methane) by proton irradiation and spark discharges. Hence, we suggest that GCRs and SEP events from the young Sun represent the most effective energy sources for the prebiotic formation of biologically important organic compounds from weakly reducing atmospheres. Since the energy flux of space weather, which generated frequent SEPs from the young Sun in the first 600 million years after the birth of the solar system, was expected to be much greater than that of GCRs, we conclude that SEP-driven energetic protons are the most promising energy sources for the prebiotic production of bioorganic compounds in the atmosphere of the Hadean Earth.

5.
Science ; 379(6634): eabn9057, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36821663

RESUMEN

Samples of the carbonaceous asteroid (162173) Ryugu were collected and brought to Earth by the Hayabusa2 spacecraft. We investigated the macromolecular organic matter in Ryugu samples and found that it contains aromatic and aliphatic carbon, ketone, and carboxyl functional groups. The spectroscopic features of the organic matter are consistent with those in chemically primitive carbonaceous chondrite meteorites that experienced parent-body aqueous alteration (reactions with liquid water). The morphology of the organic carbon includes nanoglobules and diffuse carbon associated with phyllosilicate and carbonate minerals. Deuterium and/or nitrogen-15 enrichments indicate that the organic matter formed in a cold molecular cloud or the presolar nebula. The diversity of the organic matter indicates variable levels of aqueous alteration on Ryugu's parent body.

6.
Anal Sci ; 38(1): 113-121, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35287212

RESUMEN

Pyrolysis gas chromatography-mass spectrometry is a useful technique for the analysis of complex organic matter. However, the pyrolysis temperatures must be carefully chosen to maximize the information obtained and, in parallel, minimize byproducts. One solution to accomplish this is the stepwise pyrolysis method, which has been employed to analyze complex mixtures of natural samples. Here, we compared the stepwise pyrolysis method to a suite of single-step pyrolysis runs using the same temperatures by employing a humic acid standard sample, to evaluate the advantage of the stepwise pyrolysis method. In addition, we conducted in-situ heating experiments of the humic acid under infrared microspectroscopy to observe changes in the functional groups during the stepwise pyrolysis process. Results showed that O-bearing components were released at relatively low temperatures, whereas aromatic components were released at higher temperatures, indicating that the stepwise method effectively separates labile and refractory fractions. As such, the stepwise method would be useful for analyzing limited amounts of samples, such as for extraterrestrial materials as well as for payload instruments onboard space missions.


Asunto(s)
Sustancias Húmicas , Pirólisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Calor , Sustancias Húmicas/análisis , Sustancias Macromoleculares
7.
ACS Cent Sci ; 8(12): 1664-1671, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36589881

RESUMEN

Carbonaceous chondrites contain life's essential building blocks, including amino acids, and their delivery of organic compounds would have played a key role in life's emergence on Earth. Aqueous alteration of carbonaceous chondrites is a widespread process induced by the heat produced by radioactive decay of nuclides like 26Al. Simple ubiquitous molecules like formaldehyde and ammonia could produce various organic compounds, including amino acids and complex organic macromolecules. However, the effects of radiation on such organic chemistry are unknown. Hence, the effects of gamma rays from radioactive decays on the formation of amino acids in meteorite parent bodies are demonstrated here. We discovered that gamma-ray irradiation of aqueous formaldehyde and ammonia solutions afforded a variety of amino acids. The amino acid yields had a linear relationship with the total gamma-ray dose but were unaffected by the irradiation dose rates. Given the gamma-ray production rates in the meteorite parent bodies, we estimated that the production rates were reasonable compared to amino acid abundances in carbonaceous chondrites. Our findings indicate that gamma rays may contribute to amino acid formation in parent bodies during aqueous alteration. In this paper, we propose a new prebiotic amino acid formation pathway that contributes to life's origin.

8.
Astrobiology ; 21(12): 1479-1493, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34793260

RESUMEN

Amino acids have been detected in extraterrestrial bodies such as carbonaceous chondrites (CCs), which suggests that extraterrestrial organics could be the source of the first life on Earth, and interplanetary dust particles (IDPs) or micrometeorites (MMs) are promising carriers of extraterrestrial organic carbon. Some amino acids found in CCs are amino acid precursors, but these have not been well characterized. The Tanpopo mission was conducted in Earth orbit from 2015 to 2019, and the stability of glycine (Gly), hydantoin (Hyd), isovaline (Ival), 5-ethyl-5-methylhydantoin (EMHyd), and complex organics formed by proton irradiation from CO, NH3, and H2O (CAW) in space were analyzed by high-performance liquid chromatography and/or gas chromatography/mass spectrometry. The target substances showed a logarithmic decomposition over 1-3 years upon space exposure. Recoveries of Gly and CAW were higher than those of Hyd, Ival, and EMHyd. Ground simulation experiments showed different results: Hyd was more stable than Gly. Solar ultraviolet light was fatal to all organics, and they required protection when carried by IDPs/MMs. Thus, complex amino acid precursors (such as CAW) were possibly more robust than simple precursors during transportation to primitive Earth. The Tanpopo 2 mission is currently being conducted to expose organics to more probable space conditions.


Asunto(s)
Meteoroides , Vuelo Espacial , Aminoácidos/análisis , Polvo Cósmico/análisis , Planeta Tierra , Medio Ambiente Extraterrestre
9.
Life (Basel) ; 11(1)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33419105

RESUMEN

The extraterrestrial delivery of organics to primitive Earth has been supported by many laboratory and space experiments. Minerals played an important role in the evolution of meteoritic organic matter. In this study, we simulated aqueous alteration in small bodies by using a solution mixture of H2CO and NH3 in the presence of water at 150 °C under different heating durations, which produced amino acids after acid hydrolysis. Moreover, minerals were added to the previous mixture to examine their catalyzing/inhibiting impact on amino acid formation. Without minerals, glycine was the dominant amino acid obtained at 1 d of the heating experiment, while alanine and ß-alanine increased significantly and became dominant after 3 to 7 d. Minerals enhanced the yield of amino acids at short heating duration (1 d); however, they induced their decomposition at longer heating duration (7 d). Additionally, montmorillonite enhanced amino acid production at 1 d, while olivine and serpentine enhanced production at 3 d. Molecular weight distribution in the whole of the products obtained by gel chromatography showed that minerals enhanced both decomposition and combination of molecules. Our results indicate that minerals affected the formation of amino acids in aqueous environments in small Solar System bodies and that the amino acids could have different response behaviors according to different minerals.

10.
Life (Basel) ; 10(8)2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764317

RESUMEN

Another protocol to make sulfur embedded ultrathin sections was developed for STXM-XANES, AFM-IR and TEM analyses of organic materials in small extraterrestrial samples. Polymerized liquid sulfur-instead of low-viscosity liquid sulfur-is the embedding media in this protocol. Due to high viscosity of the polymerized sulfur, the embedded samples stay near the surface of polymerized liquid sulfur, which facilitates trimming of glassy sulfur and ultramicrotomy of tiny embedded samples. In addition, well-continued ribbons of ultramicrotomed sections can be obtained, which are suitable for the above mentioned analyses. Because there is no remarkable difference in Carbon XANES spectra of Murchison IOM prepared by this protocol and by the conventional protocol, this protocol gives another alternative to prepare sulfur embedded ultramicrotomed sections.

11.
Orig Life Evol Biosph ; 50(1-2): 15-33, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32314306

RESUMEN

The early Solar System comprised a broad area of abiotically created organic compounds, including interstellar organics which were integrated into planetesimals and parent bodies of meteorites, and eventually delivered to the early Earth. In this study, we simulated interstellar complex organic compounds synthesized by proton irradiation of a gas mixture of CO, NH3, and H2O, which are known to release amino acids after acid hydrolysis on the basis of Kobayashi et al. (1999) who reported that at the first stage of chemical evolution, the main compounds formed abiotically are complex organic compounds with high molecular weights. We examined their possible hydrothermal alteration and stabilities as amino acid precursors under high temperature and pressure conditions simulating parent bodies of meteorites by using an autoclave. We reported that all samples treated at 200-300 °C predominantly released glycine and alanine, followed by α-aminobutyric acid, and serine. After heating, amino acid concentrations decreased in general; however, the recovery ratios of γ-aminobutyric acid increased with temperature. The interstellar complex organic analog could maintain as amino acid precursors after being treated at high temperature (200-300 °C) and pressure (8-14 MPa). However, the molecular structures were altered during heating to form organic compounds that are more stable and can survive in elevated hydrothermal conditions.


Asunto(s)
Aminoácidos/química , Respiraderos Hidrotermales , Sustancias Macromoleculares/química
12.
Sci Rep ; 9(1): 3169, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816187

RESUMEN

The Zag meteorite which is a thermally-metamorphosed H ordinary chondrite contains a primitive xenolithic clast that was accreted to the parent asteroid after metamorphism. The cm-sized clast contains abundant large organic grains or aggregates up to 20 µm in phyllosilicate-rich matrix. Here we report organic and isotope analyses of a large (~10 µm) OM aggregate in the Zag clast. The X-ray micro-spectroscopic technique revealed that the OM aggregate has sp2 dominated hydrocarbon networks with a lower abundance of heteroatoms than in IOM from primitive (CI,CM,CR) carbonaceous chondrites, and thus it is distinguished from most of the OM in carbonaceous meteorites. The OM aggregate has high D/H and 15N/14N ratios (δD = 2,370 ± 74‰ and δ15N = 696 ± 100‰), suggesting that it originated in a very cold environment such as the interstellar medium or outer region of the solar nebula, while the OM is embedded in carbonate-bearing matrix resulting from aqueous activities. Thus, the high D/H ratio must have been preserved during the extensive late-stage aqueous processing. It indicates that both the OM precursors and the water had high D/H ratios. Combined with 16O-poor nature of the clast, the OM aggregate and the clast are unique among known chondrite groups. We further propose that the clast possibly originated from D/P type asteroids or trans-Neptunian Objects.

13.
Life Sci Space Res (Amst) ; 20: 20-29, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30797431

RESUMEN

Titan is the largest moon of Saturn and possesses a dense atmosphere composed of nitrogen and methane. Various types of organic compounds (hydrocarbons, nitriles, etc.) have been found on Titan, which were generated by reactions taking place in its atmosphere. These reactions are considered to provide crucial evidence for chemical reactions which may have occurred in the atmosphere of primitive Earth. Cassini discovered several lakes of liquid methane and ethane on Titan's surface; in addition, the presence of ammonia water in its sub-surface was implied. In order to simulate the chemical reactions in Titan's atmosphere, gas mixtures of nitrogen and methane have been exposed to plasma discharges to synthesize complex organic matters. In this study, we focused on the formation of nucleic acid bases and related compounds recovered from synthesized Titan tholins. The five nucleic acid bases that terrestrial life uses (adenine, cytosine, thymine, guanine, and uracil) have already been reported to be present in synthesized Titan tholins. Purines and pyrimidines, including the five aforementioned nucleic acid bases, were extracted from synthesized Titan tholins and analyzed by HPLC and LC/MS. As a result, the pyrimidine bases of isocytosine and 2, 4-diaminopyrimidine were detected together with the terrestrial nucleic acid bases of adenine, uracil, and cytosine. The results obtained in conjunction with those from previous studies show that some nucleic acid bases and related pyrimidine bases are found in synthesized Titan tholins, suggesting that chemical evolutions toward xenogenetic systems could occur in Titan's environment.


Asunto(s)
Atmósfera , Ácidos Nucleicos/análisis , Ácidos Nucleicos/química , Compuestos Orgánicos/análisis , Purinas/análisis , Pirimidinas/análisis , Saturno , Medio Ambiente Extraterrestre , Meteoroides
14.
Proc Natl Acad Sci U S A ; 116(3): 753-758, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30602454

RESUMEN

Organic matter in carbonaceous chondrites is distributed in fine-grained matrix. To understand pre- and postaccretion history of organic matter and its association with surrounding minerals, microscopic techniques are mandatory. Infrared (IR) spectroscopy is a useful technique, but the spatial resolution of IR is limited to a few micrometers, due to the diffraction limit. In this study, we applied the high spatial resolution IR imaging method to CM2 carbonaceous chondrites Murchison and Bells, which is based on an atomic force microscopy (AFM) with its tip detecting thermal expansion of a sample resulting from absorption of infrared radiation. We confirmed that this technique permits ∼30 nm spatial resolution organic analysis for the meteorite samples. The IR imaging results are consistent with the previously reported association of organic matter and phyllosilicates, but our results are at much higher spatial resolution. This observation of heterogeneous distributions of the functional groups of organic matter revealed its association with minerals at ∼30 nm spatial resolution in meteorite samples by IR spectroscopy.

15.
Life (Basel) ; 8(4)2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241342

RESUMEN

In 2001, the first author (S.N.) led the publication of a book entitled "Geochemistry and the origin of life" in collaboration with Dr. Andre Brack aiming to figure out geo- and astro-chemical processes essential for the emergence of life. Since then, a great number of research progress has been achieved in the relevant topics from our group and others, ranging from the extraterrestrial inputs of life's building blocks, the chemical evolution on Earth with the aid of mineral catalysts, to the fossilized records of ancient microorganisms. Here, in addition to summarizing these findings for the origin and early evolution of life, we propose a new hypothesis for the generation and co-evolution of photosynthesis with the redox and photochemical conditions on the Earth's surface. Besides these bottom-up approaches, we introduce an experimental study on the role of water molecules in the life's function, focusing on the transition from live, dormant, and dead states through dehydration/hydration. Further spectroscopic studies on the hydrogen bonding behaviors of water molecules in living cells will provide important clues to solve the complex nature of life.

16.
Sci Adv ; 4(1): eaao3521, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29349297

RESUMEN

Direct evidence of complex prebiotic chemistry from a water-rich world in the outer solar system is provided by the 4.5-billion-year-old halite crystals hosted in the Zag and Monahans (1998) meteorites. This study offers the first comprehensive organic analysis of the soluble and insoluble organic compounds found in the millimeter-sized halite crystals containing brine inclusions and sheds light on the nature and activity of aqueous fluids on a primitive parent body. Associated with these trapped brines are organic compounds exhibiting wide chemical variations representing organic precursors, intermediates, and reaction products that make up life's precursor molecules such as amino acids. The organic compounds also contain a mixture of C-, O-, and N-bearing macromolecular carbon materials exhibiting a wide range of structural order, as well as aromatic, ketone, imine, and/or imidazole compounds. The enrichment in 15N is comparable to the organic matter in pristine Renazzo-type carbonaceous chondrites, which reflects the sources of interstellar 15N, such as ammonia and amino acids. The amino acid content of the Zag halite deviates from the meteorite matrix, supporting an exogenic origin of the halite, and therefore, the Zag meteorite contains organics synthesized on two distinct parent bodies. Our study suggests that the asteroidal parent body where the halite precipitated, potentially asteroid 1 Ceres, shows evidence for a complex combination of biologically and prebiologically relevant molecules.


Asunto(s)
Medio Ambiente Extraterrestre , Compuestos Orgánicos/química , Sales (Química)/química , Agua/química , Aminoácidos/análisis , Cristalización , Isótopos , Meteoroides , Espectrometría Raman , Espectroscopía de Absorción de Rayos X
17.
Philos Trans A Math Phys Eng Sci ; 375(2094)2017 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-28416725

RESUMEN

We describe the current state of the search for direct, surviving samples of early, inner Solar System fluids-fluid inclusions in meteorites. Meteoritic aqueous fluid inclusions are not rare, but they are very tiny and their characterization is at the state of the art for most analytical techniques. Meteoritic fluid inclusions offer us a unique opportunity to study early Solar System brines in the laboratory. Inclusion-by-inclusion analyses of the trapped fluids in carefully selected samples will, in the immediate future, provide us detailed information on the evolution of fluids as they interacted with anhydrous solid materials. Thus, real data can replace calculated fluid compositions in thermochemical calculations of the evolution of water and aqueous reactions in comets, asteroids, moons and the terrestrial planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.

18.
Sci Adv ; 3(3): e1602093, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28345041

RESUMEN

The exogenous delivery of organic molecules could have played an important role in the emergence of life on the early Earth. Carbonaceous chondrites are known to contain indigenous amino acids as well as various organic compounds and complex macromolecular materials, such as the so-called insoluble organic matter (IOM), but the origins of the organic matter are still subject to debate. We report that the water-soluble amino acid precursors are synthesized from formaldehyde, glycolaldehyde, and ammonia with the presence of liquid water, simultaneously with macromolecular organic solids similar to the chondritic IOM. Amino acid products from hydrothermal experiments after acid hydrolysis include α-, ß-, and γ-amino acids up to five carbons, for which relative abundances are similar to those extracted from carbonaceous chondrites. One-pot aqueous processing from simple ubiquitous molecules can thus produce a wide variety of meteoritic organic matter from amino acid precursors to macromolecular IOM in chondrite parent bodies.


Asunto(s)
Acetaldehído/análogos & derivados , Aminoácidos , Amoníaco/química , Planeta Tierra , Formaldehído/química , Meteoroides , Acetaldehído/química , Aminoácidos/síntesis química , Aminoácidos/química
19.
Science ; 332(6035): 1304-7, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21659601

RESUMEN

The complex suite of organic materials in carbonaceous chondrite meteorites probably originally formed in the interstellar medium and/or the solar protoplanetary disk, but was subsequently modified in the meteorites' asteroidal parent bodies. The mechanisms of formation and modification are still very poorly understood. We carried out a systematic study of variations in the mineralogy, petrology, and soluble and insoluble organic matter in distinct fragments of the Tagish Lake meteorite. The variations correlate with indicators of parent body aqueous alteration. At least some molecules of prebiotic importance formed during the alteration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...