Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49
1.
Acta Physiol (Oxf) ; 240(6): e14142, 2024 Jun.
Article En | MEDLINE | ID: mdl-38584589

AIM: Astrocytes respond to stressors by acquiring a reactive state characterized by changes in their morphology and function. Molecules underlying reactive astrogliosis, however, remain largely unknown. Given that several studies observed increase in the Amyloid Precursor Protein (APP) in reactive astrocytes, we here test whether APP plays a role in reactive astrogliosis. METHODS: We investigated whether APP instigates reactive astroglios by examining in vitro and in vivo the morphology and function of naive and APP-deficient astrocytes in response to APP and well-established stressors. RESULTS: Overexpression of APP in cultured astrocytes led to remodeling of the intermediate filament network, enhancement of cytokine production, and activation of cellular programs centered around the interferon (IFN) pathway, all signs of reactive astrogliosis. Conversely, APP deletion abrogated remodeling of the intermediate filament network and blunted expression of IFN-stimulated gene products in response to lipopolysaccharide. Following traumatic brain injury (TBI), mouse reactive astrocytes also exhibited an association between APP and IFN, while APP deletion curbed the increase in glial fibrillary acidic protein observed canonically in astrocytes in response to TBI. CONCLUSIONS: The APP thus represents a candidate molecular inducer and regulator of reactive astrogliosis. This finding has implications for understanding pathophysiology of neurodegenerative and other diseases of the nervous system characterized by reactive astrogliosis and opens potential new therapeutic avenues targeting APP and its pathways to modulate reactive astrogliosis.


Amyloid beta-Protein Precursor , Astrocytes , Gliosis , Animals , Gliosis/metabolism , Gliosis/pathology , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Astrocytes/metabolism , Astrocytes/pathology , Mice , Cells, Cultured , Mice, Inbred C57BL , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Mice, Knockout
2.
Acc Chem Res ; 56(22): 3165-3174, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37906879

ConspectusThe adenosine deaminase acting on RNA (ADAR) enzymes that catalyze the conversion of adenosine to inosine in double-stranded (ds)RNA are evolutionarily conserved and are essential for many biological functions including nervous system function, hematopoiesis, and innate immunity. Initially it was assumed that the wide-ranging biological roles of ADARs are due to inosine in mRNA being read as guanosine by the translational machinery, allowing incomplete RNA editing in a target codon to generate two different proteins from the same primary transcript. In humans, there are approximately seventy-six positions that undergo site-specific editing in tissues at greater than 20% efficiency that result in recoding. Many of these transcripts are expressed in the central nervous system (CNS) and edited by ADAR2. Exploiting mouse genetic models revealed that transgenic mice lacking the gene encoding Adar2 die within 3 weeks of birth. Therefore, the role of ADAR2 in generating protein diversity in the nervous system is clear, but why is ADAR RNA editing activity essential in other biological processes, particularly editing mainly involving ADAR1? ADAR1 edits human transcripts having embedded Alu element inverted repeats (AluIRs), but the link from this activity to innate immunity activation was elusive. Mice lacking the gene encoding Adar1 are embryonically lethal, and a major breakthrough was the discovery that the role of Adar1 in innate immunity is due to its ability to edit such repetitive element inverted repeats which have the ability to form dsRNA in transcripts. The presence of inosine prevents activation of the dsRNA sensor melanoma differentiation-associated protein 5 (Mda5). Thus, inosine helps the cell discriminate self from non-self RNA, acting like a barcode on mRNA. As innate immunity is key to many different biological processes, the basis for this widespread biological role of the ADAR1 enzyme became evident.Our group has been studying ADARs from the outset of research on these enzymes. In this Account, we give a historical perspective, moving from the initial purification of ADAR1 and ADAR2 and cloning of their encoding genes up to the current research focus in the field and what questions still remain to be addressed. We discuss the characterizations of the proteins, their localizations, posttranslational modifications, and dimerization, and how all of these affect their biological activities. Another aspect we explore is the use of mouse and Drosophila genetic models to study ADAR functions and how these were crucial in determining the biological functions of the ADAR proteins. Finally, we describe the severe consequences of rare mutations found in the human genes encoding ADAR1 and ADAR2.


Adenosine Deaminase , RNA, Double-Stranded , Animals , Mice , Humans , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , RNA, Double-Stranded/genetics , Immunity, Innate , RNA, Messenger/genetics , Inosine/genetics , Inosine/metabolism
3.
bioRxiv ; 2023 Dec 18.
Article En | MEDLINE | ID: mdl-38187544

We present in vitro and in vivo evidence demonstrating that Amyloid Precursor Protein (APP) acts as an essential instigator of reactive astrogliosis. Cell-specific overexpression of APP in cultured astrocytes led to remodelling of the intermediate filament network, enhancement of cytokine production and activation of cellular programs centred around the interferon (IFN) pathway, all signs of reactive astrogliosis. Conversely, APP deletion in cultured astrocytes abrogated remodelling of the intermediate filament network and blunted expression of IFN stimulated gene (ISG) products in response to lipopolysaccharide (LPS). Following traumatic brain injury (TBI), mouse reactive astrocytes also exhibited an association between APP and IFN, while APP deletion curbed the increase in glial fibrillary acidic protein (GFAP) observed canonically in astrocytes in response to TBI. Thus, APP represents a molecular inducer and regulator of reactive astrogliosis.

4.
Elife ; 112022 10 18.
Article En | MEDLINE | ID: mdl-36255405

The Hippo signaling pathway controls cell proliferation and tissue regeneration via its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). The canonical pathway topology is characterized by sequential phosphorylation of kinases in the cytoplasm that defines the subcellular localization of YAP and TAZ. However, the molecular mechanisms controlling the nuclear/cytoplasmic shuttling dynamics of both factors under physiological and tissue-damaging conditions are poorly understood. By implementing experimental in vitro data, partial differential equation modeling, as well as automated image analysis, we demonstrate that nuclear phosphorylation contributes to differences between YAP and TAZ localization in the nucleus and cytoplasm. Treatment of hepatocyte-derived cells with hepatotoxic acetaminophen (APAP) induces a biphasic protein phosphorylation eventually leading to nuclear protein enrichment of YAP but not TAZ. APAP-dependent regulation of nuclear/cytoplasmic YAP shuttling is not an unspecific cellular response but relies on the sequential induction of reactive oxygen species (ROS), RAC-alpha serine/threonine-protein kinase (AKT, synonym: protein kinase B), as well as elevated nuclear interaction between YAP and AKT. Mouse experiments confirm this sequence of events illustrated by the expression of ROS-, AKT-, and YAP-specific gene signatures upon APAP administration. In summary, our data illustrate the importance of nuclear processes in the regulation of Hippo pathway activity. YAP and TAZ exhibit different shuttling dynamics, which explains distinct cellular responses of both factors under physiological and tissue-damaging conditions.


Chemical and Drug Induced Liver Injury , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation , Adaptor Proteins, Signal Transducing/metabolism , Phosphoproteins/metabolism , Acetaminophen/toxicity , Reactive Oxygen Species/metabolism , Protein Serine-Threonine Kinases , YAP-Signaling Proteins , Nuclear Proteins/metabolism , Threonine/metabolism , Serine/metabolism
5.
RNA ; 28(10): 1281-1297, 2022 10.
Article En | MEDLINE | ID: mdl-35863867

The adenosine deaminase acting on RNA (ADAR) enzymes are essential for neuronal function and innate immune control. ADAR1 RNA editing prevents aberrant activation of antiviral dsRNA sensors through editing of long, double-stranded RNAs (dsRNAs). In this review, we focus on the ADAR2 proteins involved in the efficient, highly site-specific RNA editing to recode open reading frames first discovered in the GRIA2 transcript encoding the key GLUA2 subunit of AMPA receptors; ADAR1 proteins also edit many of these sites. We summarize the history of ADAR2 protein research and give an up-to-date review of ADAR2 structural studies, human ADARBI (ADAR2) mutants causing severe infant seizures, and mouse disease models. Structural studies on ADARs and their RNA substrates facilitate current efforts to develop ADAR RNA editing gene therapy to edit disease-causing single nucleotide polymorphisms (SNPs). Artificial ADAR guide RNAs are being developed to retarget ADAR RNA editing to new target transcripts in order to correct SNP mutations in them at the RNA level. Site-specific RNA editing has been expanded to recode hundreds of sites in CNS transcripts in Drosophila and cephalopods. In Drosophila and C. elegans, ADAR RNA editing also suppresses responses to self dsRNA.


Adenosine Deaminase , Adenosine Deaminase/metabolism , Animals , Antiviral Agents , Caenorhabditis elegans/genetics , Drosophila/genetics , Genetic Therapy , Humans , Mice , RNA, Double-Stranded/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, AMPA/genetics , Receptors, AMPA/metabolism
6.
Trends Immunol ; 42(11): 953-955, 2021 11.
Article En | MEDLINE | ID: mdl-34642093

ADAR1 edits adenosines to inosines in cellular double-stranded (ds)RNA, thereby preventing aberrant activation of antiviral dsRNA sensors, as well as interferon (IFN) induction in Aicardi-Goutières syndrome (AGS) encephalopathy. Recently, Nakahama et al., Tang et al., Maurano et al., and de Reuver et al. demonstrated that Adar1 Zα domain-mutant mice show aberrant MDA5 and PKR activation, developing encephalopathies; short Z-RNA patches within cellular dsRNA are unexpectedly crucial in causing aberrant antiviral responses.


Adenosine Deaminase , Autoimmune Diseases of the Nervous System , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Animals , Antiviral Agents , Autoimmune Diseases of the Nervous System/genetics , Humans , Mice , RNA Editing , RNA, Double-Stranded
8.
RNA Biol ; 18(sup1): 19-30, 2021 10 15.
Article En | MEDLINE | ID: mdl-34424827

Eukaryotic mRNAs are modified by several chemical marks which have significant impacts on mRNA biology, gene expression, and cellular metabolism as well as on the survival and development of the whole organism. The most abundant and well-studied mRNA base modifications are m6A and ADAR RNA editing. Recent studies have also identified additional mRNA marks such as m6Am, m5C, m1A and Ψ and studied their roles. Each type of modification is deposited by a specific writer, many types of modification are recognized and interpreted by several different readers and some types of modifications can be removed by eraser enzymes. Several works have addressed the functional relationships between some of the modifications. In this review we provide an overview on the current status of research on the different types of mRNA modifications and about the crosstalk between different marks and its functional consequences.


Epigenesis, Genetic , Epigenomics/methods , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , Transcriptome , Animals , Humans , RNA, Messenger/genetics
9.
Trends Biochem Sci ; 46(9): 758-771, 2021 09.
Article En | MEDLINE | ID: mdl-33736931

Modified bases act as marks on cellular RNAs so that they can be distinguished from foreign RNAs, reducing innate immune responses to endogenous RNA. In humans, mutations giving reduced levels of one base modification, adenosine-to-inosine deamination, cause a viral infection mimic syndrome, a congenital encephalitis with aberrant interferon induction. These Aicardi-Goutières syndrome 6 mutations affect adenosine deaminase acting on RNA 1 (ADAR1), which generates inosines in endogenous double-stranded (ds)RNA. The inosine base alters dsRNA structure to prevent aberrant activation of antiviral cytosolic helicase RIG-I-like receptors. We review how effects of inosines, ADARs, and other modified bases have been shown to be important in innate immunity and cancer.


Immunity, Innate , RNA Editing , RNA-Binding Proteins , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Humans , RNA, Double-Stranded , RNA-Binding Proteins/metabolism , Transcriptome
10.
RNA Biol ; 18(11): 1524-1539, 2021 11.
Article En | MEDLINE | ID: mdl-33593231

RNA editing is one of the most prevalent and abundant forms of post-transcriptional RNA modification observed in normal physiological processes and often aberrant in diseases including cancer. RNA editing changes the sequences of mRNAs, making them different from the source DNA sequence. Edited mRNAs can produce editing-recoded protein isoforms that are functionally different from the corresponding genome-encoded protein isoforms. The major type of RNA editing in mammals occurs by enzymatic deamination of adenosine to inosine (A-to-I) within double-stranded RNAs (dsRNAs) or hairpins in pre-mRNA transcripts. Enzymes that catalyse these processes belong to the adenosine deaminase acting on RNA (ADAR) family. The vast majority of knowledge on the RNA editing landscape relevant to human disease has been acquired using in vitro cancer cell culture models. The limitation of such in vitro models, however, is that the physiological or disease relevance of results obtained is not necessarily obvious. In this review we focus on discussing in vivo occurring RNA editing events that have been identified in human cancer tissue using samples surgically resected or clinically retrieved from patients. We discuss how RNA editing events occurring in tumours in vivo can identify pathological signalling mechanisms relevant to human cancer physiology which is linked to the different stages of cancer progression including initiation, promotion, survival, proliferation, immune escape and metastasis.


Adenosine/genetics , Carcinogenesis/pathology , Inosine/genetics , Neoplasms/pathology , RNA Editing , RNA, Double-Stranded/genetics , RNA-Binding Proteins/metabolism , Animals , Carcinogenesis/genetics , Humans , Neoplasms/genetics , Neoplasms/metabolism , RNA-Binding Proteins/genetics
11.
J Med Genet ; 58(7): 495-504, 2021 07.
Article En | MEDLINE | ID: mdl-32719099

BACKGROUND: Adenosine-to-inosine RNA editing is a co-transcriptional/post-transcriptional modification of double-stranded RNA, catalysed by one of two active adenosine deaminases acting on RNA (ADARs), ADAR1 and ADAR2. ADARB1 encodes the enzyme ADAR2 that is highly expressed in the brain and essential to modulate the function of glutamate and serotonin receptors. Impaired ADAR2 editing causes early onset progressive epilepsy and premature death in mice. In humans, ADAR2 dysfunction has been very recently linked to a neurodevelopmental disorder with microcephaly and epilepsy in four unrelated subjects. METHODS: We studied three children from two consanguineous families with severe developmental and epileptic encephalopathy (DEE) through detailed physical and instrumental examinations. Exome sequencing (ES) was used to identify ADARB1 mutations as the underlying genetic cause and in vitro assays with transiently transfected cells were performed to ascertain the impact on ADAR2 enzymatic activity and splicing. RESULTS: All patients showed global developmental delay, intractable early infantile-onset seizures, microcephaly, severe-to-profound intellectual disability, axial hypotonia and progressive appendicular spasticity. ES revealed the novel missense c.1889G>A, p.(Arg630Gln) and deletion c.1245_1247+1 del, p.(Leu415PhefsTer14) variants in ADARB1 (NM_015833.4). The p.(Leu415PhefsTer14) variant leads to incorrect splicing resulting in frameshift with a premature stop codon and loss of enzyme function. In vitro RNA editing assays showed that the p.(Arg630Gln) variant resulted in a severe impairment of ADAR2 enzymatic activity. CONCLUSION: In conclusion, these data support the pathogenic role of biallelic ADARB1 variants as the cause of a distinctive form of DEE, reinforcing the importance of RNA editing in brain function and development.


Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Brain Diseases/genetics , Epilepsy/genetics , Neurodevelopmental Disorders/genetics , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/genetics , Alleles , Brain Diseases/enzymology , Brain Diseases/metabolism , Child , Child, Preschool , Consanguinity , Epilepsy/enzymology , Female , HEK293 Cells , Humans , Mutation , Neurodevelopmental Disorders/enzymology , Pedigree , RNA Editing , RNA-Binding Proteins/metabolism
12.
Nat Commun ; 11(1): 1580, 2020 03 27.
Article En | MEDLINE | ID: mdl-32221286

ADAR RNA editing enzymes are high-affinity dsRNA-binding proteins that deaminate adenosines to inosines in pre-mRNA hairpins and also exert editing-independent effects. We generated a Drosophila AdarE374A mutant strain encoding a catalytically inactive Adar with CRISPR/Cas9. We demonstrate that Adar adenosine deamination activity is necessary for normal locomotion and prevents age-dependent neurodegeneration. The catalytically inactive protein, when expressed at a higher than physiological level, can rescue neurodegeneration in Adar mutants, suggesting also editing-independent effects. Furthermore, loss of Adar RNA editing activity leads to innate immune induction, indicating that Drosophila Adar, despite being the homolog of mammalian ADAR2, also has functions similar to mammalian ADAR1. The innate immune induction in fly Adar mutants is suppressed by silencing of Dicer-2, which has a RNA helicase domain similar to MDA5 that senses unedited dsRNAs in mammalian Adar1 mutants. Our work demonstrates that the single Adar enzyme in Drosophila unexpectedly has dual functions.


Adenosine Deaminase/genetics , Brain/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , Immunity, Innate/genetics , RNA Editing/genetics , Adenosine Deaminase/chemistry , Adenosine Monophosphate/metabolism , Aging/pathology , Animals , Catalysis , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Gene Expression Regulation , Locomotion , Nerve Degeneration/pathology , Point Mutation/genetics , Protein Domains , RNA Helicases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribonuclease III/metabolism
13.
Am J Hum Genet ; 106(4): 467-483, 2020 04 02.
Article En | MEDLINE | ID: mdl-32220291

The RNA editing enzyme ADAR2 is essential for the recoding of brain transcripts. Impaired ADAR2 editing leads to early-onset epilepsy and premature death in a mouse model. Here, we report bi-allelic variants in ADARB1, the gene encoding ADAR2, in four unrelated individuals with microcephaly, intellectual disability, and epilepsy. In one individual, a homozygous variant in one of the double-stranded RNA-binding domains (dsRBDs) was identified. In the others, variants were situated in or around the deaminase domain. To evaluate the effects of these variants on ADAR2 enzymatic activity, we performed in vitro assays with recombinant proteins in HEK293T cells and ex vivo assays with fibroblasts derived from one of the individuals. We demonstrate that these ADAR2 variants lead to reduced editing activity on a known ADAR2 substrate. We also demonstrate that one variant leads to changes in splicing of ADARB1 transcript isoforms. These findings reinforce the importance of RNA editing in brain development and introduce ADARB1 as a genetic etiology in individuals with intellectual disability, microcephaly, and epilepsy.


Adenosine Deaminase/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Intellectual Disability/genetics , Microcephaly/genetics , RNA-Binding Proteins/genetics , Seizures/genetics , Alleles , Alternative Splicing/genetics , Child , Child, Preschool , HEK293 Cells , Humans , Male , RNA Splicing/genetics
14.
BMC Biol ; 18(1): 15, 2020 02 14.
Article En | MEDLINE | ID: mdl-32059717

BACKGROUND: In fly brains, the Drosophila Adar (adenosine deaminase acting on RNA) enzyme edits hundreds of transcripts to generate edited isoforms of encoded proteins. Nearly all editing events are absent or less efficient in larvae but increase at metamorphosis; the larger number and higher levels of editing suggest editing is most required when the brain is most complex. This idea is consistent with the fact that Adar mutations affect the adult brain most dramatically. However, it is unknown whether Drosophila Adar RNA editing events mediate some coherent physiological effect. To address this question, we performed a genetic screen for suppressors of Adar mutant defects. Adar5G1 null mutant flies are partially viable, severely locomotion defective, aberrantly accumulate axonal neurotransmitter pre-synaptic vesicles and associated proteins, and develop an age-dependent vacuolar brain neurodegeneration. RESULTS: A genetic screen revealed suppression of all Adar5G1 mutant phenotypes tested by reduced dosage of the Tor gene, which encodes a pro-growth kinase that increases translation and reduces autophagy in well-fed conditions. Suppression of Adar5G1 phenotypes by reduced Tor is due to increased autophagy; overexpression of Atg5, which increases canonical autophagy initiation, reduces aberrant accumulation of synaptic vesicle proteins and suppresses all Adar mutant phenotypes tested. Endosomal microautophagy (eMI) is another Tor-inhibited autophagy pathway involved in synaptic homeostasis in Drosophila. Increased expression of the key eMI protein Hsc70-4 also reduces aberrant accumulation of synaptic vesicle proteins and suppresses all Adar5G1 mutant phenotypes tested. CONCLUSIONS: These findings link Drosophila Adar mutant synaptic and neurotransmission defects to more general cellular defects in autophagy; presumably, edited isoforms of CNS proteins are required for optimum synaptic response capabilities in the brain during the behaviorally complex adult life stage.


Adenosine Deaminase/genetics , Autophagy , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Synaptic Transmission/genetics , Adenosine Deaminase/metabolism , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Larva/genetics , Larva/growth & development , Larva/physiology , Male , Mutation
15.
Cell Mol Life Sci ; 77(9): 1793-1810, 2020 May.
Article En | MEDLINE | ID: mdl-31375868

The universal nine-amino-acid transactivation domains (9aaTADs) have been identified in numerous transcription activators. Here, we identified the conserved 9aaTAD motif in all nine members of the specificity protein (SP) family. Previously, the Sp1 transcription factor has been defined as a glutamine-rich activator. We showed by amino acid substitutions that the glutamine residues are completely dispensable for 9aaTAD function and are not conserved in the SP family. We described the origin and evolutionary history of 9aaTADs. The 9aaTADs of the ancestral Sp2 gene became inactivated in early chordates. We next discovered that an accumulation of valines in 9aaTADs inactivated their transactivation function and enabled their strict conservation during evolution. Subsequently, in chordates, Sp2 has duplicated and created new paralogs, Sp1, Sp3, and Sp4 (the SP1-4 clade). During chordate evolution, the dormancy of the Sp2 activation domain lasted over 100 million years. The dormant but still intact ancestral Sp2 activation domains allowed diversification of the SP1-4 clade into activators and repressors. By valine substitution in the 9aaTADs, Sp1 and Sp3 regained their original activator function found in ancestral lower metazoan sea sponges. Therefore, the vertebrate SP1-4 clade could include both repressors and activators. Furthermore, we identified secondary 9aaTADs in Sp2 introns present from fish to primates, including humans. In the gibbon genome, introns containing 9aaTADs were used as exons, which turned the Sp2 gene into an activator. Similarly, we identified introns containing 9aaTADs used conditionally as exons in the (SP family-unrelated) transcription factor SREBP1, suggesting that the intron-9aaTAD reservoir is a general phenomenon.


Evolution, Molecular , Gene Expression Regulation , Introns/genetics , Sp2 Transcription Factor/antagonists & inhibitors , Sp2 Transcription Factor/genetics , Valine/metabolism , Amino Acid Sequence , Animals , Gene Duplication , Humans , Phylogeny , Sequence Homology , Sp2 Transcription Factor/metabolism , Transcriptional Activation , Valine/genetics
16.
RNA ; 25(6): 713-726, 2019 06.
Article En | MEDLINE | ID: mdl-30894411

Viral and cellular double-stranded RNA (dsRNA) is recognized by cytosolic innate immune sensors, including RIG-I-like receptors. Some cytoplasmic dsRNA is commonly present in cells, and one source is mitochondrial dsRNA, which results from bidirectional transcription of mitochondrial DNA (mtDNA). Here we demonstrate that Trp53 mutant mouse embryonic fibroblasts contain immune-stimulating endogenous dsRNA of mitochondrial origin. We show that the immune response induced by this dsRNA is mediated via RIG-I-like receptors and leads to the expression of type I interferon and proinflammatory cytokine genes. The mitochondrial dsRNA is cleaved by RNase L, which cleaves all cellular RNA including mitochondrial mRNAs, increasing activation of RIG-I-like receptors. When mitochondrial transcription is interrupted there is a subsequent decrease in this immune-stimulatory dsRNA. Our results reveal that the role of p53 in innate immunity is even more versatile and complex than previously anticipated. Our study, therefore, sheds new light on the role of endogenous RNA in diseases featuring aberrant immune responses.


Adenosine Deaminase/genetics , DEAD Box Protein 58/genetics , Immunity, Innate/genetics , RNA, Double-Stranded/genetics , RNA, Mitochondrial/genetics , Tumor Suppressor Protein p53/genetics , Adaptor Proteins, Signal Transducing , Adenosine Deaminase/deficiency , Adenosine Deaminase/immunology , Animals , Carrier Proteins/genetics , Carrier Proteins/immunology , DEAD Box Protein 58/immunology , Embryo, Mammalian , Endoribonucleases/genetics , Endoribonucleases/immunology , Fibroblasts/cytology , Fibroblasts/immunology , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/immunology , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Intracellular Signaling Peptides and Proteins , Mice , Mice, Inbred C57BL , Mice, Knockout , Proteins/genetics , Proteins/immunology , RNA, Double-Stranded/immunology , RNA, Mitochondrial/immunology , RNA-Binding Proteins , Transcription, Genetic , Transfection , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/immunology
17.
Biochim Biophys Acta Gene Regul Mech ; 1862(3): 356-369, 2019 03.
Article En | MEDLINE | ID: mdl-30391332

Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in dsRNA. ADAR editing in pre-mRNAs recodes open reading frames and alters splicing, mRNA structure and interactions with miRNAs. Here, we review ADAR gene expression, splice forms, posttranslational modifications, subcellular localizations and functions of ADAR protein isoforms. ADAR1 edits cellular dsRNA to prevent aberrant activation of cytoplasmic antiviral dsRNA sensors; ADAR1 mutations lead to aberrant expression of interferon in Aicardi Goutières syndrome (AGS), a human congenital encephalopathy. We review related studies on mouse Adar1 mutant phenotypes, their rescues by preventing signaling from the antiviral RIG-I-like Sensors (RLRs), as well as Adar1 mechanisms in innate immune suppression and other roles of Adar1, including editing-independent effects. ADAR2, expressed primarily in CNS, edits glutamate receptor transcripts; regulation of ADAR2 activity in response to neuronal activity mediates homeostatic synaptic plasticity of vertebrate AMPA and kainite receptors. In Drosophila, synapses and synaptic proteins show dramatic decreases at night during sleep; Drosophila Adar, an orthologue of ADAR2, edits hundreds of mRNAs; the most conserved editing events occur in transcripts encoding synapse-associated proteins. Adar mutant flies exhibit locomotion defects associated with very increased sleep pressure resulting from a failure of homeostatic synaptic processes. A study on Adar2 mutant mice identifies a new role in circadian rhythms, acting indirectly through miRNAs such as let-7 to modulate levels of let-7 target mRNAs; ADAR1 also regulates let-7 miRNA processing. Drosophila ADAR, an orthologue of vertebrate ADAR2, also regulates let-7 miRNA levels and Adar mutant flies have a circadian mutant phenotype.


Adenosine Deaminase/metabolism , Circadian Clocks , Immunity, Innate , RNA Editing , Sleep , Adenosine Deaminase/genetics , Animals , Humans
18.
Nature ; 550(7675): 249-254, 2017 10 11.
Article En | MEDLINE | ID: mdl-29022589

Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules. Although many editing sites have recently been discovered, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples. We show that editing levels in non-repetitive coding regions vary more between tissues than editing levels in repetitive regions. Globally, ADAR1 is the primary editor of repetitive sites and ADAR2 is the primary editor of non-repetitive coding sites, whereas the catalytically inactive ADAR3 predominantly acts as an inhibitor of editing. Cross-species analysis of RNA editing in several tissues revealed that species, rather than tissue type, is the primary determinant of editing levels, suggesting stronger cis-directed regulation of RNA editing for most sites, although the small set of conserved coding sites is under stronger trans-regulation. In addition, we curated an extensive set of ADAR1 and ADAR2 targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR enzymes in vivo. Further analysis of the GTEx data revealed several potential regulators of editing, such as AIMP2, which reduces editing in muscles by enhancing the degradation of the ADAR proteins. Collectively, our work provides insights into the complex cis- and trans-regulation of A-to-I editing.


Adenosine Deaminase , Primates/genetics , RNA Editing/genetics , RNA-Binding Proteins , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Animals , Female , Genotype , HEK293 Cells , Humans , Male , Mice , Muscles/metabolism , Nuclear Proteins/metabolism , Organ Specificity/genetics , Proteolysis , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Spatio-Temporal Analysis , Species Specificity , Transcriptome/genetics
19.
Hum Genet ; 136(9): 1265-1278, 2017 09.
Article En | MEDLINE | ID: mdl-28913566

We review the structures and functions of ADARs and their involvements in human diseases. ADAR1 is widely expressed, particularly in the myeloid component of the blood system, and plays a prominent role in promiscuous editing of long dsRNA. Missense mutations that change ADAR1 residues and reduce RNA editing activity cause Aicardi-Goutières Syndrome, a childhood encephalitis and interferonopathy that mimics viral infection and resembles an extreme form of Systemic Lupus Erythmatosus (SLE). In Adar1 mouse mutant models aberrant interferon expression is prevented by eliminating interferon activation signaling from cytoplasmic dsRNA sensors, indicating that unedited cytoplasmic dsRNA drives the immune induction. On the other hand, upregulation of ADAR1 with widespread promiscuous RNA editing is a prominent feature of many cancers and particular site-specific RNA editing events are also affected. ADAR2 is most highly expressed in brain and is primarily required for site-specific editing of CNS transcripts; recent findings indicate that ADAR2 editing is regulated by neuronal excitation for synaptic scaling of glutamate receptors. ADAR2 is also linked to the circadian clock and to sleep. Mutations in ADAR2 could contribute to excitability syndromes such as epilepsy, to seizures, to diseases involving neuronal plasticity defects, such as autism and Fragile-X Syndrome, to neurodegenerations such as ALS, or to astrocytomas or glioblastomas in which reduced ADAR2 activity is required for oncogenic cell behavior. The range of human disease associated with ADAR1 mutations may extend further to include other inflammatory conditions while ADAR2 mutations may affect psychiatric conditions.


Adenosine Deaminase , Mental Disorders , Mutation , Nervous System Diseases , RNA Editing/genetics , RNA, Double-Stranded , RNA-Binding Proteins , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Animals , Humans , Mental Disorders/genetics , Mental Disorders/metabolism , Mice , Mice, Mutant Strains , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
20.
RNA ; 23(9): 1317-1328, 2017 09.
Article En | MEDLINE | ID: mdl-28559490

ADAR RNA editing enzymes (adenosine deaminases acting on RNA) that convert adenosine bases to inosines were first identified biochemically 30 years ago. Since then, studies on ADARs in genetic model organisms, and evolutionary comparisons between them, continue to reveal a surprising range of pleiotropic biological effects of ADARs. This review focuses on Drosophila melanogaster, which has a single Adar gene encoding a homolog of vertebrate ADAR2 that site-specifically edits hundreds of transcripts to change individual codons in ion channel subunits and membrane and cytoskeletal proteins. Drosophila ADAR is involved in the control of neuronal excitability and neurodegeneration and, intriguingly, in the control of neuronal plasticity and sleep. Drosophila ADAR also interacts strongly with RNA interference, a key antiviral defense mechanism in invertebrates. Recent crystal structures of human ADAR2 deaminase domain-RNA complexes help to interpret available information on Drosophila ADAR isoforms and on the evolution of ADARs from tRNA deaminase ADAT proteins. ADAR RNA editing is a paradigm for the now rapidly expanding range of RNA modifications in mRNAs and ncRNAs. Even with recent progress, much remains to be understood about these groundbreaking ADAR RNA modification systems.


Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , RNA Editing , Adenosine Deaminase/chemistry , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Evolution, Molecular , Gene Expression , Humans , Isoenzymes , Nervous System/metabolism , Protein Binding , Protein Interaction Domains and Motifs , RNA Interference , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Structure-Activity Relationship , Substrate Specificity , Vertebrates
...