Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Trends Parasitol ; 40(6): 487-499, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760256

RESUMEN

Malaria remains a persistent global public health challenge because of the limitations of current prevention tools. The use of transgenic mosquitoes incapable of transmitting malaria, in conjunction with existing methods, holds promise for achieving elimination of malaria and preventing its reintroduction. In this context, population modification involves the spread of engineered genetic elements through mosquito populations that render them incapable of malaria transmission. Significant progress has been made in this field over the past decade in revealing promising targets, optimizing genetic tools, and facilitating the transition from the laboratory to successful field deployments, which are subject to regulatory scrutiny. This review summarizes recent advances and ongoing challenges in 'curing' Anopheles vectors of the malaria parasite.


Asunto(s)
Animales Modificados Genéticamente , Anopheles , Malaria , Control de Mosquitos , Mosquitos Vectores , Animales , Malaria/prevención & control , Malaria/transmisión , Control de Mosquitos/métodos , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología , Anopheles/genética , Anopheles/parasitología , Humanos
2.
Insect Biochem Mol Biol ; 164: 104041, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38008364

RESUMEN

The cytochrome P450 enzymes of the CYP4G subfamily are some of the most intriguing insect P450s in terms of structure and function. In Drosophila, CYP4G1 is highly expressed in the oenocytes and is the last enzyme in the biosynthesis of cuticular hydrocarbons, while CYP4G15 is expressed in the brain and is of unknown function. Both proteins have a CYP4G-specific and characteristic amino acid sequence insertion corresponding to a loop between the G and H helices whose function is unclear. Here we address these enigmatic structural and functional features of Drosophila CYP4Gs. First, we used reverse genetics to generate D. melanogaster strains in which all or part of the CYP4G-specific loop was removed from CYP4G1. We showed that the full loop was not needed for proper folding of the P450, but it is essential for function, and that just a short stretch of six amino acids is required for the enzyme's ability to make hydrocarbons. Second, we confirmed by immunocytochemistry that CYP4G15 is expressed in the brain and showed that it is specifically associated with the cortex glia cell subtype. We then expressed CYP4G15 ectopically in oenocytes, revealing that it can produce of a blend of hydrocarbons, albeit to quantitatively lower levels resulting in only a partial rescue of CYP4G1 knockdown flies. The CYP4G1 structural variants studied here should facilitate the biochemical characterization of CYP4G enzymes. Our results also raise the question of the putative role of hydrocarbons and their synthesis by cortex glial cells.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Insectos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hidrocarburos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
PLoS Pathog ; 19(8): e1011226, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37585450

RESUMEN

Contact insecticides are primarily used for the control of Anopheles malaria vectors. These chemicals penetrate mosquito legs and other appendages; the first barriers to reaching their neuronal targets. An ATP-Binding Cassette transporter from the H family (ABCH2) is highly expressed in Anopheles coluzzii legs, and further induced upon insecticide exposure. RNAi-mediated silencing of the ABCH2 caused a significant increase in deltamethrin mortality compared to control mosquitoes, coincident with a corresponding increase in 14C-deltamethrin penetration. RT-qPCR analysis and immunolocalization revealed ABCH2 to be mainly localized in the legs and head appendages, and more specifically, the apical part of the epidermis, underneath the cuticle. To unravel the molecular mechanism underlying the role of ABCH2 in modulating pyrethroid toxicity, two hypotheses were investigated: An indirect role, based on the orthology with other insect ABCH transporters involved with lipid transport and deposition of CHC lipids in Anopheles legs which may increase cuticle thickness, slowing down the penetration rate of deltamethrin; or the direct pumping of deltamethrin out of the organism. Evaluation of the leg cuticular hydrocarbon (CHC) content showed no affect by ABCH2 silencing, indicating this protein is not associated with the transport of leg CHCs. Homology-based modeling suggested that the ABCH2 half-transporter adopts a physiological homodimeric state, in line with its ability to hydrolyze ATP in vitro when expressed on its own in insect cells. Docking analysis revealed a deltamethrin pocket in the homodimeric transporter. Furthermore, deltamethrin-induced ATP hydrolysis in ABCH2-expressing cell membranes, further supports that deltamethrin is indeed an ABCH2 substrate. Overall, our findings pinpoint ABCH2 participating in deltamethrin toxicity regulation.


Asunto(s)
Anopheles , Insecticidas , Malaria , Animales , Anopheles/metabolismo , Resistencia a los Insecticidas , Mosquitos Vectores/genética , Insecticidas/farmacología , Nitrilos/toxicidad , Nitrilos/metabolismo , Adenosina Trifosfato/metabolismo , Control de Mosquitos
4.
PLoS Pathog ; 19(6): e1011440, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37319296

RESUMEN

Long non-coding RNAs (lncRNAs) play critical regulatory roles in various cellular and metabolic processes in mosquitoes and all other organisms studied thus far. In particular, their involvement in essential processes such as reproduction makes them potential targets for the development of novel pest control approaches. However, their function in mosquito biology remains largely unexplored. To elucidate the role of lncRNAs in mosquitoes' reproduction and vector competence for arboviruses, we have implemented a computational and experimental pipeline to mine, screen, and characterize lncRNAs related to these two biological processes. Through analysis of publicly available Zika virus (ZIKV) infection-regulated Aedes aegypti transcriptomes, at least six lncRNAs were identified as being significantly upregulated in response to infection in various mosquito tissues. The roles of these ZIKV-regulated lncRNAs (designated Zinc1, Zinc2, Zinc3, Zinc9, Zinc10 and Zinc22), were further investigated by dsRNA-mediated silencing studies. Our results show that silencing of Zinc1, Zinc2, and Zinc22 renders mosquitoes significantly less permissive to ZIKV infection, while silencing of Zinc22 also reduces fecundity, indicating a potential role for Zinc22 in trade-offs between vector competence and reproduction. We also found that silencing of Zinc9 significantly increases fecundity but has no effect on ZIKV infection, suggesting that Zinc9 may be a negative regulator of oviposition. Our work demonstrates that some lncRNAs play host factor roles by facilitating viral infection in mosquitoes. We also show that lncRNAs can influence both mosquito reproduction and permissiveness to virus infection, two biological systems with important roles in mosquito vectorial capacity.


Asunto(s)
Aedes , ARN Largo no Codificante , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Virus Zika/fisiología , Aedes/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Mosquitos Vectores/genética , Reproducción
5.
Proc Biol Sci ; 286(1907): 20191091, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31311476

RESUMEN

Malaria incidence has halved since the year 2000, with 80% of the reduction attributable to the use of insecticides. However, insecticide resistance is now widespread, is rapidly increasing in spectrum and intensity across Africa, and may be contributing to the increase of malaria incidence in 2018. The role of detoxification enzymes and target site mutations has been documented in the major malaria vector Anopheles gambiae; however, the emergence of striking resistant phenotypes suggests the occurrence of additional mechanisms. By comparing legs, the most relevant insect tissue for insecticide uptake, we show that resistant mosquitoes largely remodel their leg cuticles via enhanced deposition of cuticular proteins and chitin, corroborating a leg-thickening phenotype. Moreover, we show that resistant female mosquitoes seal their leg cuticles with higher total and different relative amounts of cuticular hydrocarbons, compared with susceptible ones. The structural and functional alterations in Anopheles female mosquito legs are associated with a reduced uptake of insecticides, substantially contributing to the resistance phenotype.


Asunto(s)
Anopheles/fisiología , Extremidades/fisiología , Resistencia a los Insecticidas , Insecticidas/farmacología , Mosquitos Vectores/fisiología , Animales , Anopheles/ultraestructura , Femenino , Lipidómica , Malaria/transmisión , Masculino , Microscopía Electrónica de Transmisión , Mosquitos Vectores/ultraestructura , Proteoma , Proteómica
6.
Insect Biochem Mol Biol ; 110: 52-59, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31051237

RESUMEN

Cuticular hydrocarbon (CHC) biosynthesis is a major pathway of insect physiology. In Drosophila melanogaster the cytochrome P450 CYP4G1 catalyses the insect-specific oxidative decarbonylation step, while in the malaria vector Anopheles gambiae, two CYP4G paralogues, CYP4G16 and CYP4G17 are present. Analysis of the subcellular localization of CYP4G17 and CYP4G16 in larval and pupal stages revealed that CYP4G16 preserves its PM localization across developmental stages analyzed; however CYPG17 is differentially localized in two distinct types of pupal oenocytes, presumably oenocytes of larval and adult developmental specificity. Western blot analysis showed the presence of two CYP4G17 forms, potentially associated with each oenocyte type. Both An. gambiae CYP4Gs were expressed in D. melanogaster flies in a Cyp4g1 silenced background in order to functionally characterize them in vivo. CYP4G16, CYP4G17 or their combination rescued the lethal phenotype of Cyp4g1-knock down flies, demonstrating that CYP4G17 is also a functional decarbonylase, albeit of somewhat lower efficiency than CYP4G16 in Drosophila. Flies expressing mosquito CYP4G16 and/or CYP4G17 produced similar CHC profiles to 'wild-type' flies expressing the endogenous CYP4G1, but they also produce very long-chain dimethyl-branched CHCs not detectable in wild type flies, suggesting that the specificity of the CYP4G enzymes contributes to determine the complexity of the CHC blend. In conclusion, both An. gambiae CYP4G enzymes contribute to the unique Anopheles CHC profile, which has been associated to defense, adult desiccation tolerance, insecticide penetration rate and chemical communication.


Asunto(s)
Anopheles/genética , Sistema Enzimático del Citocromo P-450/genética , Hidrocarburos/metabolismo , Proteínas de Insectos/genética , Animales , Anopheles/crecimiento & desarrollo , Anopheles/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Insectos/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Fenotipo , Pupa/genética , Pupa/crecimiento & desarrollo , Pupa/metabolismo
7.
Sci Rep ; 8(1): 1462, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29362379

RESUMEN

An essential component of malaria vector control programmes is the detection of Plasmodium falciparum within its mosquito vectors, particularly in the salivary glands where the infective sporozoites reside. Several protocols have been developed for this purpose; however they require dissection of mosquito specimens prior to analysis. Here, a novel one-step RT-qPCR TaqMan diagnostic assay was developed for mosquitoes with infective Plasmodium falciparum sporozoites in the salivary glands. It is based on detection of the sporozoite-specific Pfslarp and Pfplp1 gene transcripts. These transcripts were chosen based on bioinformatics analysis, and experimentally verified to be overexpressed in the salivary gland sporozoite stage of the parasite compared to other mosquito parasite stages. The proof of principle and the performance of the assay were demonstrated using RNAlater preserved mosquito samples. Tests of analytical sensitivity showed the novel TaqMan assay to be 100% accurate, although its performance in the field needs to be further demonstrated. This method has no requirement for dissection and post-PCR processing and thus is simple and rapid to perform in individual mosquitoes or mosquito pools. It can be used in single or multiplex formats also targeting additional markers expressed in different tissues, such as detoxification enzymes associated with insecticide resistance.


Asunto(s)
Mosquitos Vectores/parasitología , Plasmodium falciparum/aislamiento & purificación , Proteínas Protozoarias/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Anopheles/parasitología , Patología Molecular , Plasmodium falciparum/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Glándulas Salivales/parasitología , Sensibilidad y Especificidad , Esporozoítos/genética , Esporozoítos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA