Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Public Health ; 23(1): 1236, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365559

RESUMEN

BACKGROUND: Hantavirus Pulmonary Syndrome (HPS) is a rodent-borne zoonosis in the Americas, with up to 50% mortality rates. In Argentina, the Northwestern endemic area presents half of the annually notified HPS cases in the country, transmitted by at least three rodent species recognized as reservoirs of Orthohantavirus. The potential distribution of reservoir species based on ecological niche models (ENM) can be a useful tool to establish risk areas for zoonotic diseases. Our main aim was to generate an Orthohantavirus risk transmission map based on ENM of the reservoir species in northwest Argentina (NWA), to compare this map with the distribution of HPS cases; and to explore the possible effect of climatic and environmental variables on the spatial variation of the infection risk. METHODS: Using the reservoir geographic occurrence data, climatic/environmental variables, and the maximum entropy method, we created models of potential geographic distribution for each reservoir in NWA. We explored the overlap of the HPS cases with the reservoir-based risk map and a deforestation map. Then, we calculated the human population at risk using a census radius layer and a comparison of the environmental variables' latitudinal variation with the distribution of HPS risk. RESULTS: We obtained a single best model for each reservoir. The temperature, rainfall, and vegetation cover contributed the most to the models. In total, 945 HPS cases were recorded, of which 97,85% were in the highest risk areas. We estimated that 18% of the NWA population was at risk and 78% of the cases occurred less than 10 km from deforestation. The highest niche overlap was between Calomys fecundus and Oligoryzomys chacoensis. CONCLUSIONS: This study identifies potential risk areas for HPS transmission based on climatic and environmental factors that determine the distribution of the reservoirs and Orthohantavirus transmission in NWA. This can be used by public health authorities as a tool to generate preventive and control measures for HPS in NWA.


Asunto(s)
Síndrome Pulmonar por Hantavirus , Orthohantavirus , Animales , Humanos , Reservorios de Enfermedades , Argentina/epidemiología , Zoonosis/epidemiología , Síndrome Pulmonar por Hantavirus/epidemiología , Ecosistema , Roedores , Sigmodontinae
2.
mSphere ; 8(3): e0001823, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37097182

RESUMEN

We performed whole-genome sequencing with bait enrichment techniques to analyze Andes virus (ANDV), a cause of human hantavirus pulmonary syndrome. We used cryopreserved lung tissues from a naturally infected long-tailed colilargo, including early, intermediate, and late cell culture, passages of an ANDV isolate from that animal, and lung tissues from golden hamsters experimentally exposed to that ANDV isolate. The resulting complete genome sequences were subjected to detailed comparative genomic analysis against American orthohantaviruses. We identified four amino acid substitutions related to cell culture adaptation that resulted in attenuation of ANDV in the typically lethal golden hamster animal model of hantavirus pulmonary syndrome. Changes in the ANDV nucleocapsid protein, glycoprotein, and small nonstructural protein open reading frames correlated with mutations typical for ANDV strains associated with increased virulence in the small-animal model. Finally, we identified three amino acid substitutions, two in the small nonstructural protein and one in the glycoprotein, that were only present in the clade of viruses associated with efficient person-to-person transmission. Our results indicate that there are single-nucleotide polymorphisms that could be used to predict strain-specific ANDV virulence and/or transmissibility. IMPORTANCE Several orthohantaviruses cause the zoonotic disease hantavirus pulmonary syndrome (HPS) in the Americas. Among them, HPS caused by Andes virus (ANDV) is of great public health concern because it is associated with the highest case fatality rate (up to 50%). ANDV is also the only orthohantavirus associated with relatively robust evidence of person-to-person transmission. This work reveals nucleotide changes in the ANDV genome that are associated with virulence attenuation in an animal model and increased transmissibility in humans. These findings may pave the way to early severity predictions in future ANDV-caused HPS outbreaks.


Asunto(s)
Síndrome Pulmonar por Hantavirus , Orthohantavirus , Cricetinae , Animales , Humanos , Orthohantavirus/genética , Síndrome Pulmonar por Hantavirus/genética , Mesocricetus , Modelos Animales , Genoma Viral
3.
Parasit Vectors ; 15(1): 197, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676740

RESUMEN

BACKGROUND: The WHO has established a control strategy for Strongyloides stercoralis in school-aged children as well as targets and to maintain control programs for Ascaris lumbricoides, Trichuris trichiura and hookworms. For an efficient development of control programs, it is necessary to know the target countries around the world, as well as the areas within each country where efforts should be focused. Therefore, maps that provide information on the areas at risk for soil-transmitted helminth (STH) infections on a national and sub-national scale would allow for a better allocation of resources. METHODS: We used the ecological niche models MaxEnt and Kuenm R library to estimate the global distribution of S. stercoralis and hookworms. We used occurrence points of both species extracted from surveys of two literature reviews and from the Global Atlas of Helminth Infection database, together with 14 raster maps of environmental variables. RESULTS: We obtained two raster maps with the presence probability of S. stercoralis and hookworm infections at a global level and then estimated the global population at risk to be 2.6 and 3.4 billion, respectively. The population at risk was also estimated at the country level using estimations for areas as small as 25 km2. A relationship was found between the probability of the presence of S. stercoralis and its prevalence, and a raster map was generated. Annual precipitation, annual temperature, soil carbon content and land cover were the main associated environmental variables. The ecological niches of Strongyloides stercoralis and hookworms had an overlap of 68%. CONCLUSIONS: Here we provide information that can be used for developing more efficient and integrated control strategies for S. stercoralis and hookworm infections. This information can be annexed to the study of other risk factors or even other diseases to assess the health status of a community. GRAPHICAL ABSTARCT.


Asunto(s)
Helmintiasis , Infecciones por Uncinaria , Strongyloides stercoralis , Estrongiloidiasis , Ancylostomatoidea , Animales , Ascaris lumbricoides , Niño , Ecosistema , Heces , Helmintiasis/epidemiología , Infecciones por Uncinaria/epidemiología , Humanos , Prevalencia , Suelo , Estrongiloidiasis/epidemiología
4.
PLoS Negl Trop Dis ; 15(11): e0009842, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34788281

RESUMEN

Orthohantaviruses are emerging rodent-borne pathogens that cause Hantavirus Pulmonary Syndrome in humans. They have a wide range of rodent reservoir hosts and are transmitted to humans through aerosolized viral particles generated by the excretions of infected individuals. Since the first description of HPS in Argentina, new hantaviruses have been reported throughout the country, most of which are pathogenic to humans. We present here the first HPS case infected with Alto Paraguay virus reported in Argentina. Until now, Alto Paraguay virus was considered a non-pathogenic orthohantavirus since it was identified in a rodent, Holochilus chacarius. In addition to this, with the goal of identifying potential hantavirus host species in the province of Santa Fe, we finally describe a novel orthohantavirus found in the native rodent Scapteromys aquaticus, which differed from other hantaviruses described in the country so far. Our findings implicate an epidemiological warning regarding these new orthohantaviruses circulating in Central Argentina as well as new rodent species that must be considered as hosts from now on.


Asunto(s)
Reservorios de Enfermedades/virología , Síndrome Pulmonar por Hantavirus/virología , Orthohantavirus/aislamiento & purificación , Sigmodontinae/virología , Adolescente , Animales , Anticuerpos Antivirales/sangre , Argentina , Femenino , Orthohantavirus/clasificación , Orthohantavirus/genética , Humanos , Masculino , Filogenia , Sigmodontinae/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA