Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Metab ; 35(4): 601-619.e10, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36977414

RESUMEN

Adipose tissue modulates energy homeostasis by secreting leptin, but little is known about the factors governing leptin production. We show that succinate, long perceived as a mediator of immune response and lipolysis, controls leptin expression via its receptor SUCNR1. Adipocyte-specific deletion of Sucnr1 influences metabolic health according to nutritional status. Adipocyte Sucnr1 deficiency impairs leptin response to feeding, whereas oral succinate mimics nutrient-related leptin dynamics via SUCNR1. SUCNR1 activation controls leptin expression via the circadian clock in an AMPK/JNK-C/EBPα-dependent manner. Although the anti-lipolytic role of SUCNR1 prevails in obesity, its function as a regulator of leptin signaling contributes to the metabolically favorable phenotype in adipocyte-specific Sucnr1 knockout mice under standard dietary conditions. Obesity-associated hyperleptinemia in humans is linked to SUCNR1 overexpression in adipocytes, which emerges as the major predictor of adipose tissue leptin expression. Our study establishes the succinate/SUCNR1 axis as a metabolite-sensing pathway mediating nutrient-related leptin dynamics to control whole-body homeostasis.


Asunto(s)
Relojes Circadianos , Leptina , Animales , Humanos , Ratones , Adipocitos/metabolismo , Metabolismo Energético/fisiología , Leptina/metabolismo , Ratones Noqueados , Obesidad/metabolismo , Succinatos/metabolismo
2.
Sci Rep ; 11(1): 13923, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230537

RESUMEN

Adipose-derived mesenchymal stem cells (ASCs) are a promising option for the treatment of obesity and its metabolic co-morbidities. Despite the recent identification of brown adipose tissue (BAT) as a potential target in the management of obesity, the use of ASCs isolated from BAT as a therapy for patients with obesity has not yet been explored. Metabolic activation of BAT has been shown to have not only thermogenic effects, but it also triggers the secretion of factors that confer protection against obesity. Herein, we isolated and characterized ASCs from the visceral adipose tissue surrounding a pheochromocytoma (IB-hASCs), a model of inducible BAT in humans. We then compared the anti-obesity properties of IB-hASCs and human ASCs isolated from visceral white adipose tissue (W-hASCs) in a murine model of diet-induced obesity. We found that both ASC therapies mitigated the metabolic abnormalities of obesity to a similar extent, including reducing weight gain and improving glucose tolerance. However, infusion of IB-hASCs was superior to W-hASCs in suppressing lipogenic and inflammatory markers, as well as preserving insulin secretion. Our findings provide evidence for the metabolic benefits of visceral ASC infusion and support further studies on IB-hASCs as a therapeutic option for obesity-related comorbidities.


Asunto(s)
Tejido Adiposo Blanco/patología , Dieta , Obesidad/patología , Células Madre/patología , Neoplasias de las Glándulas Suprarrenales/patología , Animales , Biomarcadores/metabolismo , Femenino , Regulación de la Expresión Génica , Glucosa/metabolismo , Humanos , Inflamación/genética , Metabolismo de los Lípidos/genética , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Feocromocitoma/patología , Aumento de Peso
3.
Br J Pharmacol ; 178(10): 2131-2145, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32986861

RESUMEN

BACKGROUND AND PURPOSE: Glucagon-like peptide-2 (GLP-2) is a gastrointestinal hormone released in response to nutritional intake that exerts a wide range of effects by activating GLP-2 receptors. In addition to its intestinotrophic effects, GLP-2 also positively influences glucose metabolism under conditions of obesity, but the mechanisms behind this remain unclear. Here, we have investigated the molecular role of the GLP-2/GLP-2 receptor axis in energetic metabolism, focusing on its potential modulatory effects on adipose tissue. EXPERIMENTAL APPROACH: Physiological measurements (body weight, food intake, locomotor activity, and energy expenditure) and metabolic studies (glucose and insulin tolerance tests) were performed on lean and obese mice treated with the protease-resistant GLP-2 analogue teduglutide. KEY RESULTS: Acute but not chronic centrally administered teduglutide decreased food intake and weight-gain. By contrast, chronic activation of peripheral GLP-2 receptors increased body weight-independent glucose tolerance and had anti-inflammatory effects on visceral adipose tissue. Using a gene silencing approach, we found that adipose tissue is necessary for these beneficial effects of teduglutide. Finally, teduglutide regulates the inflammatory state and acts as an anabolic signal in human adipocytes. CONCLUSION AND IMPLICATIONS: Overall, our data identify adipose tissue as a new, clinically relevant, site of action for GLP-2 activity in obesity. LINKED ARTICLES: This article is part of a themed issue on Cellular metabolism and diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.10/issuetoc.


Asunto(s)
Tejido Adiposo , Péptido 2 Similar al Glucagón , Peso Corporal , Ingestión de Alimentos , Humanos , Obesidad/tratamiento farmacológico
5.
Diabetes Care ; 42(10): 1956-1965, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31375523

RESUMEN

OBJECTIVE: To determine the potential use of baseline circulating succinate to predict type 2 diabetes remission after bariatric surgery. RESEARCH DESIGN AND METHODS: Forty-five obese patients with diabetes were randomly assigned to Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy (SG), or laparoscopic greater curvature plication. Anthropometric parameters were evaluated, and a complete biochemical analysis including circulating serum succinate concentrations was performed at baseline and 1 year after surgery. The results were externally validated in a second cohort including 88 obese patients with diabetes assigned to RYGB or SG based on clinical criteria. RESULTS: Succinate baseline concentrations were an independent predictor of diabetes remission after bariatric surgery. Patients achieving remission after 1 year had lower levels of baseline succinate (47.8 [37.6-64.6] µmol/L vs. 64.1 [52.5-82.9] µmol/L; P = 0.018). Moreover, succinate concentrations were significantly decreased 1 year after surgery (58.9 [46.4-82.4] µmol/L vs. 46.0 [35.8-65.3] µmol/L, P = 0.005). In multivariate analysis, the best logistic regression model showed that baseline succinate (odds ratio [OR] 11.3, P = 0.031) and the type of surgery (OR 26.4, P = 0.010) were independently associated with remission. The C-statistic for this model was 0.899 (95% CI 0.809-0.989) in the derivation cohort, which significantly improved the prediction of remission compared with current available scores, and 0.729 (95% CI 0.612-0.846) in the validation cohort. Interestingly, patients had a different response to the type of surgery according to baseline succinate, with significant differences in remission rates. CONCLUSIONS: Circulating succinate is reduced after bariatric surgery. Baseline succinate levels have predictive value for diabetes remission independently of previously described presurgical factors and improve upon the current available scores to predict remission.


Asunto(s)
Cirugía Bariátrica , Biomarcadores/sangre , Diabetes Mellitus Tipo 2/cirugía , Obesidad/cirugía , Ácido Succínico/sangre , Adulto , Anciano , Cirugía Bariátrica/métodos , Estudios de Cohortes , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Femenino , Humanos , Laparoscopía/métodos , Masculino , Persona de Mediana Edad , Obesidad/sangre , Obesidad/complicaciones , Obesidad/diagnóstico , Periodo Preoperatorio , Pronóstico , Inducción de Remisión , Resultado del Tratamiento , Pérdida de Peso
6.
Nat Immunol ; 20(5): 581-592, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962591

RESUMEN

Succinate is a signaling metabolite sensed extracellularly by succinate receptor 1 (SUNCR1). The accumulation of succinate in macrophages is known to activate a pro-inflammatory program; however, the contribution of SUCNR1 to macrophage phenotype and function has remained unclear. Here we found that activation of SUCNR1 had a critical role in the anti-inflammatory responses in macrophages. Myeloid-specific deficiency in SUCNR1 promoted a local pro-inflammatory phenotype, disrupted glucose homeostasis in mice fed a normal chow diet, exacerbated the metabolic consequences of diet-induced obesity and impaired adipose-tissue browning in response to cold exposure. Activation of SUCNR1 promoted an anti-inflammatory phenotype in macrophages and boosted the response of these cells to type 2 cytokines, including interleukin-4. Succinate decreased the expression of inflammatory markers in adipose tissue from lean human subjects but not that from obese subjects, who had lower expression of SUCNR1 in adipose-tissue-resident macrophages. Our findings highlight the importance of succinate-SUCNR1 signaling in determining macrophage polarization and assign a role to succinate in limiting inflammation.


Asunto(s)
Inflamación/inmunología , Macrófagos/inmunología , Obesidad/inmunología , Receptores Acoplados a Proteínas G/inmunología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Animales , Células Cultivadas , Citocinas/genética , Citocinas/inmunología , Citocinas/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Inflamación/genética , Inflamación/metabolismo , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Obesidad/genética , Obesidad/metabolismo , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Ácido Succínico/inmunología , Ácido Succínico/metabolismo , Ácido Succínico/farmacología , Células THP-1
7.
ISME J ; 12(7): 1642-1657, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29434314

RESUMEN

Gut microbiota-related metabolites are potential clinical biomarkers for cardiovascular disease (CVD). Circulating succinate, a metabolite produced by both microbiota and the host, is increased in hypertension, ischemic heart disease, and type 2 diabetes. We aimed to analyze systemic levels of succinate in obesity, a major risk factor for CVD, and its relationship with gut microbiome. We explored the association of circulating succinate with specific metagenomic signatures in cross-sectional and prospective cohorts of Caucasian Spanish subjects. Obesity was associated with elevated levels of circulating succinate concomitant with impaired glucose metabolism. This increase was associated with specific changes in gut microbiota related to succinate metabolism: a higher relative abundance of succinate-producing Prevotellaceae (P) and Veillonellaceae (V), and a lower relative abundance of succinate-consuming Odoribacteraceae (O) and Clostridaceae (C) in obese individuals, with the (P + V/O + C) ratio being a main determinant of plasma succinate. Weight loss intervention decreased (P + V/O + C) ratio coincident with the reduction in circulating succinate. In the spontaneous evolution after good dietary advice, alterations in circulating succinate levels were linked to specific metagenomic signatures associated with carbohydrate metabolism and energy production with independence of body weight change. Our data support the importance of microbe-microbe interactions for the metabolite signature of gut microbiome and uncover succinate as a potential microbiota-derived metabolite related to CVD risk.


Asunto(s)
Microbioma Gastrointestinal , Obesidad/microbiología , Ácido Succínico/sangre , Adulto , Anciano , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biomarcadores/sangre , Estudios Transversales , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad/sangre , Filogenia , Estudios Prospectivos
8.
Stem Cell Reports ; 9(4): 1109-1123, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28966116

RESUMEN

Crohn's disease (CD) is characterized by the expansion of mesenteric fat, also known as "creeping fat." We explored the plasticity and immune properties of adipose-derived stem cells (ASCs) in the context of CD as potential key players in the development of creeping fat. Mesenteric CD-derived ASCs presented a more proliferative, inflammatory, invasive, and phagocytic phenotype than equivalent cells from healthy donors, irrespective of the clinical stage. Remarkably, ASCs from the subcutaneous depot of patients with CD also showed an activated immune response that was associated with a reduction in their immunosuppressive properties. The invasive phenotype of mesenteric CD ASCs was governed by an inflammasome-mediated inflammatory state since blocking inflammasome signaling, mainly the secretion of interleukin-1ß, reversed this characteristic. Thus, CD alters the biological functions of ASCs as adipocyte precursors, but also their immune properties. Selection of ASCs with the best immunomodulatory properties is advocated for the success of cell-based therapies.


Asunto(s)
Tejido Adiposo/citología , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/metabolismo , Inflamasomas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Adipogénesis/genética , Adulto , Diferenciación Celular/genética , Proliferación Celular , Citocinas/metabolismo , Femenino , Glucólisis , Humanos , Inmunomodulación , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Fagocitosis/inmunología , Fenotipo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
9.
Stem Cells ; 34(10): 2559-2573, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27352919

RESUMEN

Adipose tissue-derived stem cells (ASCs) are proposed as an alternative stem cell source to bone marrow-derived cells for immune cell therapy. However, microenvironmental factors may impact the functionality of this population in human adipose tissue (AT). We hypothesized that the fat depot in addition to the donor phenotype controls the immunomodulatory capacity of ASCs. Focusing on obesity and type 2 diabetes (T2D) as metabolic disorders that might affect the immune response of ASCs, we compared the inflammatory response of ASCs from subcutaneous and visceral AT of age-matched donors (lean n = 4, body mass index [BMI] 21.98 ± 1.9; obese n = 4 BMI 33.1 ± 2.1 and T2D n = 4 BMI 35.3 ± 1.5). Obese and particularly T2D-derived ASCs showed increased expression of inflammatory markers, activation of NLRP3 inflammasome and higher migration, invasion and phagocytosis capacities than those derived from lean donors. Remarkably, ASCs derived from obese and T2D subjects exhibited a reduction in typical immunosuppressive activities attributed to stem cells. Accordingly, obese and T2D-ASCs were less effective in suppressing lymphocyte proliferation, activating the M2 macrophage phenotype, and in increasing TGF-ß1 secretion, than lean-derived ASCs. Treatment of lean hASCs with interleukin (IL)-1ß mimicked the dysfunctional immune behavior of obese and T2D hASCs. Conversely, combined treatment with IL1RA and TGF-ß1 reverted the phenotype of obese- and T2D-ASCs. These data indicate that the donor metabolic phenotype compromises the immunomodulatory properties of ASCs. These results are relevant not only for understanding the physiology of ASCs in terms of cell-based therapies but also for their role as key regulators of the immune response. Stem Cells 2016;34:2559-2573.


Asunto(s)
Tejido Adiposo/patología , Diabetes Mellitus Tipo 2/patología , Obesidad/patología , Células Madre/inmunología , Adulto , Femenino , Humanos , Terapia de Inmunosupresión , Inflamasomas/metabolismo , Inflamación/patología , Interleucina-1beta/metabolismo , Masculino , Persona de Mediana Edad , Fagocitosis , Células Madre/metabolismo , Donantes de Tejidos , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA