Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-23367445

RESUMEN

One of the fundamental characteristics of the brain is its hierarchical and temporal organization: scales in both space and time must be considered to fully grasp the system's underlying mechanisms and their impact on brain function. Complex interactions taking place at the molecular level regulate neuronal activity that further modifies the function of millions of neurons connected by trillions of synapses, ultimately giving rise to complex function and behavior at the system level. Likewise, the spatial complexity is accompanied by a complex temporal integration of events taking place at the microsecond scale leading to slower changes occurring at the second, minute and hour scales. These integrations across hierarchies of the nervous system are sufficiently complex to have impeded the development of routine multi-level modeling methodologies. The present study describes an example of our multiscale efforts to rise from the biomolecular level to the neuron level. We more specifically describe how we integrate biomolecular mechanisms taking place at glutamatergic and gabaergic synapses and integrate them to study the impact of these modifications on spiking activity of a CA1 pyramidal cell in the hippocampus.


Asunto(s)
Neuronas GABAérgicas/patología , Glutamina/metabolismo , Hipocampo/metabolismo , Modelos Neurológicos , Neuronas/patología , Neuronas/fisiología , Células Piramidales/citología , Algoritmos , Animales , Simulación por Computador , Humanos , Cinética , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Biología de Sistemas , Ácido gamma-Aminobutírico/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-22254344

RESUMEN

The brain is a perfect example of an integrated multi-scale system, as the complex interactions taking place at the molecular level regulate neuronal activity that further modifies the function of millions of neurons connected by trillions of synapses, ultimately giving rise to complex function and behavior at the system level. Likewise, the spatial complexity is accompanied by a complex temporal integration of events taking place at the microsecond scale leading to slower changes occurring at the second, minute and hour scales. In the present study we illustrate our approach to model and simulate the spatio-temporal complexity of the nervous system by developing a multi-scale model integrating synaptic models into the neuronal and ultimately network levels. We apply this approach to a concrete example and demonstrate how changes at the level of kinetic parameters of a receptor model are translated into significant changes in the firing of a pyramidal neuron. These results illustrate the abilities of our modeling approach and support its direct application to the evaluation of the effects of drugs, from functional target to integrated system.


Asunto(s)
Potenciales de Acción/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Oxazinas/farmacología , Células Piramidales/fisiología , Receptores AMPA/agonistas , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Simulación por Computador , Humanos , Red Nerviosa/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA