Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Am J Med Genet A ; 188(9): 2750-2759, 2022 09.
Article En | MEDLINE | ID: mdl-35543142

The pre-mRNA-processing factor 8, encoded by PRPF8, is a scaffolding component of a spliceosome complex involved in the removal of introns from mRNA precursors. Previously, heterozygous pathogenic variants in PRPF8 have been associated with autosomal dominant retinitis pigmentosa. More recently, PRPF8 was suggested as a candidate gene for autism spectrum disorder due to the enrichment of sequence variants in this gene in individuals with neurodevelopmental disorders. We report 14 individuals with various forms of neurodevelopmental conditions, found to have heterozygous, predominantly de novo, missense, and loss-of-function variants in PRPF8. These individuals have clinical features that may represent a new neurodevelopmental syndrome.


Autism Spectrum Disorder , Neurodevelopmental Disorders , Retinitis Pigmentosa , Autism Spectrum Disorder/genetics , Heterozygote , Humans , Neurodevelopmental Disorders/genetics , RNA-Binding Proteins/genetics , Retinitis Pigmentosa/genetics
3.
Genet Med ; 23(6): 1101-1107, 2021 06.
Article En | MEDLINE | ID: mdl-33495530

PURPOSE: Data on the clinical prevalence and spectrum of uniparental disomy (UPD) remain limited. Trio exome sequencing (ES) presents a comprehensive method for detection of UPD alongside sequence and copy-number variant analysis. METHODS: We analyzed 32,067 ES trios referred for diagnostic testing to create a profile of UPD events and their disease associations. ES single-nucleotide polymorphism (SNP) and copy-number data were used to identify both whole-chromosome and segmental UPD and to categorize whole-chromosome results as isodisomy, heterodisomy, or mixed. RESULTS: Ninety-nine whole-chromosome and 13 segmental UPD events were identified. Of these, 29 were associated with an imprinting disorder, and 16 were associated with a positive test result through homozygous sequence variants. Isodisomy was more commonly observed in large chromosomes along with a higher rate of homozygous pathogenic variants, while heterodisomy was more frequent in chromosomes associated with imprinting or trisomy mosaicism (14, 15, 16, 20, 22). CONCLUSION: Whole-chromosome UPD was observed in 0.31% of cases, resulting in a diagnostic finding in 0.14%. Only three UPD-positive cases had a diagnostic finding unrelated to the UPD. Thirteen UPD events were identified in cases with prior normal SNP chromosomal microarray results, demonstrating the additional diagnostic value of UPD detection by trio ES.


Exome , Uniparental Disomy , DNA Copy Number Variations/genetics , Exome/genetics , Homozygote , Humans , Uniparental Disomy/genetics , Exome Sequencing
4.
Genet Med ; 23(4): 653-660, 2021 04.
Article En | MEDLINE | ID: mdl-33299146

PURPOSE: This study aims to provide a comprehensive description of the phenotypic and genotypic spectrum of SNAP25 developmental and epileptic encephalopathy (SNAP25-DEE) by reviewing newly identified and previously reported individuals. METHODS: Individuals harboring heterozygous missense or loss-of-function variants in SNAP25 were assembled through collaboration with international colleagues, matchmaking platforms, and literature review. For each individual, detailed phenotyping, classification, and structural modeling of the identified variant were performed. RESULTS: The cohort comprises 23 individuals with pathogenic or likely pathogenic de novo variants in SNAP25. Intellectual disability and early-onset epilepsy were identified as the core symptoms of SNAP25-DEE, with recurrent findings of movement disorders, cerebral visual impairment, and brain atrophy. Structural modeling for all variants predicted possible functional defects concerning SNAP25 or impaired interaction with other components of the SNARE complex. CONCLUSION: We provide a comprehensive description of SNAP25-DEE with intellectual disability and early-onset epilepsy mostly occurring before the age of two years. These core symptoms and additional recurrent phenotypes show an overlap to genes encoding other components or associated proteins of the SNARE complex such as STX1B, STXBP1, or VAMP2. Thus, these findings advance the concept of a group of neurodevelopmental disorders that may be termed "SNAREopathies."


Brain Diseases , Epilepsy , Intellectual Disability , Neurodevelopmental Disorders , Synaptosomal-Associated Protein 25/genetics , Child, Preschool , Epilepsy/genetics , Humans , Neurodevelopmental Disorders/genetics , Phenotype
5.
Am J Med Genet A ; 182(9): 2037-2048, 2020 09.
Article En | MEDLINE | ID: mdl-32710489

The SET domain containing 2, histone lysine methyltransferase encoded by SETD2 is a dual-function methyltransferase for histones and microtubules and plays an important role for transcriptional regulation, genomic stability, and cytoskeletal functions. Specifically, SETD2 is associated with trimethylation of histone H3 at lysine 36 (H3K36me3) and methylation of α-tubulin at lysine 40. Heterozygous loss of function and missense variants have previously been described with Luscan-Lumish syndrome (LLS), which is characterized by overgrowth, neurodevelopmental features, and absence of overt congenital anomalies. We have identified 15 individuals with de novo variants in codon 1740 of SETD2 whose features differ from those with LLS. Group 1 consists of 12 individuals with heterozygous variant c.5218C>T p.(Arg1740Trp) and Group 2 consists of 3 individuals with heterozygous variant c.5219G>A p.(Arg1740Gln). The phenotype of Group 1 includes microcephaly, profound intellectual disability, congenital anomalies affecting several organ systems, and similar facial features. Individuals in Group 2 had moderate to severe intellectual disability, low normal head circumference, and absence of additional major congenital anomalies. While LLS is likely due to loss of function of SETD2, the clinical features seen in individuals with variants affecting codon 1740 are more severe suggesting an alternative mechanism, such as gain of function, effects on epigenetic regulation, or posttranslational modification of the cytoskeleton. Our report is a prime example of different mutations in the same gene causing diverging phenotypes and the features observed in Group 1 suggest a new clinically recognizable syndrome uniquely associated with the heterozygous variant c.5218C>T p.(Arg1740Trp) in SETD2.


Genetic Predisposition to Disease , Histone-Lysine N-Methyltransferase/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Tubulin/genetics , Child , Child, Preschool , Codon/genetics , Epigenesis, Genetic/genetics , Female , Genetic Association Studies , Humans , Infant , Intellectual Disability/pathology , Loss of Function Mutation/genetics , Male , Mutation, Missense , Nervous System Malformations/genetics , Nervous System Malformations/pathology , Neurodevelopmental Disorders/physiopathology
6.
Am J Hum Genet ; 106(3): 405-411, 2020 03 05.
Article En | MEDLINE | ID: mdl-32109420

Recurrent somatic variants in SPOP are cancer specific; endometrial and prostate cancers result from gain-of-function and dominant-negative effects toward BET proteins, respectively. By using clinical exome sequencing, we identified six de novo pathogenic missense variants in SPOP in seven individuals with developmental delay and/or intellectual disability, facial dysmorphisms, and congenital anomalies. Two individuals shared craniofacial dysmorphisms, including congenital microcephaly, that were strikingly different from those of the other five individuals, who had (relative) macrocephaly and hypertelorism. We measured the effect of SPOP variants on BET protein amounts in human Ishikawa endometrial cancer cells and patient-derived cell lines because we hypothesized that variants would lead to functional divergent effects on BET proteins. The de novo variants c.362G>A (p.Arg121Gln) and c. 430G>A (p.Asp144Asn), identified in the first two individuals, resulted in a gain of function, and conversely, the c.73A>G (p.Thr25Ala), c.248A>G (p.Tyr83Cys), c.395G>T (p.Gly132Val), and c.412C>T (p.Arg138Cys) variants resulted in a dominant-negative effect. Our findings suggest that these opposite functional effects caused by the variants in SPOP result in two distinct and clinically recognizable syndromic forms of intellectual disability with contrasting craniofacial dysmorphisms.


Mutation, Missense , Neurodevelopmental Disorders/genetics , Nuclear Proteins/genetics , Repressor Proteins/genetics , Adolescent , Child , Child, Preschool , Facies , Female , Humans , Infant , Intellectual Disability/genetics , Male , Skull/abnormalities , Young Adult
8.
Am J Hum Genet ; 105(5): 1048-1056, 2019 11 07.
Article En | MEDLINE | ID: mdl-31668703

NTNG2 encodes netrin-G2, a membrane-anchored protein implicated in the molecular organization of neuronal circuitry and synaptic organization and diversification in vertebrates. In this study, through a combination of exome sequencing and autozygosity mapping, we have identified 16 individuals (from seven unrelated families) with ultra-rare homozygous missense variants in NTNG2; these individuals present with shared features of a neurodevelopmental disorder consisting of global developmental delay, severe to profound intellectual disability, muscle weakness and abnormal tone, autistic features, behavioral abnormalities, and variable dysmorphisms. The variants disrupt highly conserved residues across the protein. Functional experiments, including in silico analysis of the protein structure, in vitro assessment of cell surface expression, and in vitro knockdown, revealed potential mechanisms of pathogenicity of the variants, including loss of protein function and decreased neurite outgrowth. Our data indicate that appropriate expression of NTNG2 plays an important role in neurotypical development.


GPI-Linked Proteins/genetics , Mutation, Missense/genetics , Netrins/genetics , Neurodevelopmental Disorders/genetics , Adolescent , Adult , Child , Child, Preschool , Exome/genetics , Female , Homozygote , Humans , Intellectual Disability/genetics , Male , Pedigree , Exome Sequencing/methods , Young Adult
9.
Brain ; 142(9): 2617-2630, 2019 09 01.
Article En | MEDLINE | ID: mdl-31327001

The underpinnings of mild to moderate neurodevelopmental delay remain elusive, often leading to late diagnosis and interventions. Here, we present data on exome and genome sequencing as well as array analysis of 13 individuals that point to pathogenic, heterozygous, mostly de novo variants in WDFY3 (significant de novo enrichment P = 0.003) as a monogenic cause of mild and non-specific neurodevelopmental delay. Nine variants were protein-truncating and four missense. Overlapping symptoms included neurodevelopmental delay, intellectual disability, macrocephaly, and psychiatric disorders (autism spectrum disorders/attention deficit hyperactivity disorder). One proband presented with an opposing phenotype of microcephaly and the only missense-variant located in the PH-domain of WDFY3. Findings of this case are supported by previously published data, demonstrating that pathogenic PH-domain variants can lead to microcephaly via canonical Wnt-pathway upregulation. In a separate study, we reported that the autophagy scaffolding protein WDFY3 is required for cerebral cortical size regulation in mice, by controlling proper division of neural progenitors. Here, we show that proliferating cortical neural progenitors of human embryonic brains highly express WDFY3, further supporting a role for this molecule in the regulation of prenatal neurogenesis. We present data on Wnt-pathway dysregulation in Wdfy3-haploinsufficient mice, which display macrocephaly and deficits in motor coordination and associative learning, recapitulating the human phenotype. Consequently, we propose that in humans WDFY3 loss-of-function variants lead to macrocephaly via downregulation of the Wnt pathway. In summary, we present WDFY3 as a novel gene linked to mild to moderate neurodevelopmental delay and intellectual disability and conclude that variants putatively causing haploinsufficiency lead to macrocephaly, while an opposing pathomechanism due to variants in the PH-domain of WDFY3 leads to microcephaly.


Adaptor Proteins, Signal Transducing/genetics , Autophagy-Related Proteins/genetics , Brain/embryology , Brain/pathology , Genetic Variation/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Adaptor Proteins, Signal Transducing/chemistry , Adolescent , Animals , Autophagy-Related Proteins/chemistry , Child , Child, Preschool , Female , Humans , Male , Mice , Mice, Transgenic , Organ Size , Protein Structure, Secondary
10.
Am J Hum Genet ; 104(6): 1139-1157, 2019 06 06.
Article En | MEDLINE | ID: mdl-31155282

Zimmermann-Laband syndrome (ZLS) is characterized by coarse facial features with gingival enlargement, intellectual disability (ID), hypertrichosis, and hypoplasia or aplasia of nails and terminal phalanges. De novo missense mutations in KCNH1 and KCNK4, encoding K+ channels, have been identified in subjects with ZLS and ZLS-like phenotype, respectively. We report de novo missense variants in KCNN3 in three individuals with typical clinical features of ZLS. KCNN3 (SK3/KCa2.3) constitutes one of three members of the small-conductance Ca2+-activated K+ (SK) channels that are part of a multiprotein complex consisting of the pore-forming channel subunits, the constitutively bound Ca2+ sensor calmodulin, protein kinase CK2, and protein phosphatase 2A. CK2 modulates Ca2+ sensitivity of the channels by phosphorylating SK-bound calmodulin. Patch-clamp whole-cell recordings of KCNN3 channel-expressing CHO cells demonstrated that disease-associated mutations result in gain of function of the mutant channels, characterized by increased Ca2+ sensitivity leading to faster and more complete activation of KCNN3 mutant channels. Pretreatment of cells with the CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole revealed basal inhibition of wild-type and mutant KCNN3 channels by CK2. Analogous experiments with the KCNN3 p.Val450Leu mutant previously identified in a family with portal hypertension indicated basal constitutive channel activity and thus a different gain-of-function mechanism compared to the ZLS-associated mutant channels. With the report on de novo KCNK4 mutations in subjects with facial dysmorphism, hypertrichosis, epilepsy, ID, and gingival overgrowth, we propose to combine the phenotypes caused by mutations in KCNH1, KCNK4, and KCNN3 in a group of neurological potassium channelopathies caused by an increase in K+ conductance.


Abnormalities, Multiple/etiology , Craniofacial Abnormalities/etiology , Fibromatosis, Gingival/etiology , Gain of Function Mutation , Hand Deformities, Congenital/etiology , Small-Conductance Calcium-Activated Potassium Channels/genetics , Abnormalities, Multiple/pathology , Adult , Amino Acid Sequence , Animals , CHO Cells , Child , Child, Preschool , Craniofacial Abnormalities/pathology , Cricetinae , Cricetulus , Female , Fibromatosis, Gingival/pathology , Hand Deformities, Congenital/pathology , Humans , Ion Channel Gating , Male , Middle Aged , Phenotype , Protein Conformation , Sequence Homology , Small-Conductance Calcium-Activated Potassium Channels/chemistry , Small-Conductance Calcium-Activated Potassium Channels/metabolism
11.
Am J Med Genet A ; 179(7): 1276-1286, 2019 07.
Article En | MEDLINE | ID: mdl-31124279

Lysine-specific demethylase 6B (KDM6B) demethylates trimethylated lysine-27 on histone H3. The methylation and demethylation of histone proteins affects gene expression during development. Pathogenic alterations in histone lysine methylation and demethylation genes have been associated with multiple neurodevelopmental disorders. We have identified a number of de novo alterations in the KDM6B gene via whole exome sequencing (WES) in a cohort of 12 unrelated patients with developmental delay, intellectual disability, dysmorphic facial features, and other clinical findings. Our findings will allow for further investigation in to the role of the KDM6B gene in human neurodevelopmental disorders.


Genetic Variation , Jumonji Domain-Containing Histone Demethylases/genetics , Neurodevelopmental Disorders/genetics , Adolescent , Child, Preschool , Cohort Studies , Female , Humans , Male
12.
J Hum Genet ; 63(3): 349-356, 2018 Mar.
Article En | MEDLINE | ID: mdl-29279609

Cornelia de Lange syndrome (CdLS) is a rare neurodevelopmental syndrome for which mutations in five causative genes that encode (SMC1A, SMC3, RAD21) or regulate (NIPBL, HDAC8) the cohesin complex, account for ~70% of cases. Herein we report on four female Subjects who were found to carry novel intragenic deletions in HDAC8. In one case, the deletion was found in mosaic state and it was determined to be present in ~38% of blood lymphocytes and in nearly all cells of a buccal sample. All deletions, for which parental blood samples were available, were shown to have arisen de novo. X-chromosome inactivation studies demonstrated marked skewing, suggesting strong selection against the mutated HDAC8 allele. Based on an investigation of the deletion breakpoints, we hypothesize that microhomology-mediated replicative mechanisms may be implicated in the formation of some of these rearrangements. This study broadens the mutational spectrum of HDAC8, provides the first description of a causative HDAC8 somatic mutation and increases the knowledge on possible mutational mechanisms underlying copy number variations in HDAC8. Moreover our findings highlight the clinical utility of considering copy number analysis in HDAC8 as well as the analysis on DNA from more than one tissue as an indispensable part of the routine molecular diagnosis of individuals with CdLS or CdLS-overlapping features.


De Lange Syndrome/diagnosis , De Lange Syndrome/genetics , Genetic Association Studies , Histone Deacetylases/genetics , Phenotype , Repressor Proteins/genetics , Sequence Deletion , Base Sequence , Child , Child, Preschool , Chromosome Breakpoints , Comparative Genomic Hybridization , DNA Copy Number Variations , Exons , Facies , Female , Gene Duplication , Humans , Sequence Analysis, DNA , X Chromosome Inactivation
13.
Hum Mol Genet ; 26(24): 4937-4950, 2017 12 15.
Article En | MEDLINE | ID: mdl-29040572

Iron-sulfur (Fe-S) clusters are ubiquitous cofactors essential to various cellular processes, including mitochondrial respiration, DNA repair, and iron homeostasis. A steadily increasing number of disorders are being associated with disrupted biogenesis of Fe-S clusters. Here, we conducted whole-exome sequencing of patients with optic atrophy and other neurological signs of mitochondriopathy and identified 17 individuals from 13 unrelated families with recessive mutations in FDXR, encoding the mitochondrial membrane-associated flavoprotein ferrodoxin reductase required for electron transport from NADPH to cytochrome P450. In vitro enzymatic assays in patient fibroblast cells showed deficient ferredoxin NADP reductase activity and mitochondrial dysfunction evidenced by low oxygen consumption rates (OCRs), complex activities, ATP production and increased reactive oxygen species (ROS). Such defects were rescued by overexpression of wild-type FDXR. Moreover, we found that mice carrying a spontaneous mutation allelic to the most common mutation found in patients displayed progressive gait abnormalities and vision loss, in addition to biochemical defects consistent with the major clinical features of the disease. Taken together, these data provide the first demonstration that germline, hypomorphic mutations in FDXR cause a novel mitochondriopathy and optic atrophy in humans.


Ferredoxins/genetics , Optic Atrophy/genetics , Sulfite Reductase (Ferredoxin)/genetics , Adolescent , Alleles , Animals , Child , Child, Preschool , Electron Transport , Female , Ferredoxins/metabolism , Humans , Infant , Iron/metabolism , Iron-Sulfur Proteins/genetics , Male , Mice , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mutagenesis , Mutation , Oxidoreductases/genetics , Oxidoreductases/metabolism , Pedigree , Sulfite Reductase (Ferredoxin)/metabolism , Exome Sequencing/methods
14.
Hum Pathol ; 60: 86-94, 2017 02.
Article En | MEDLINE | ID: mdl-27771374

BRCA-associated protein 1 (BAP1) immunohistochemistry (IHC) and CDKN2A (p16) fluorescence in situ hybridization (FISH) have shown clinical utility in confirming the diagnosis of malignant pleural mesothelioma (MPM), but the role for using these 2 markers to guide clinical management is not yet clear. Although p16 loss is predictive of poor prognosis, there is controversy as to whether BAP1 loss is predictive of a more favorable prognosis; how these results interact with one another has not been explored. We performed CDKN2A FISH on a previously published tissue microarray on which we had performed BAP1 IHC, revealing combined BAP1/p16 status for 93 MPM cases. As expected, BAP1 IHC in combination with CDKN2A FISH resulted in high sensitivity (84%) and specificity (100%) for MPM, and p16 loss was an independent predictor of poor survival (hazard ratio, 2.2553; P = .0135). There was no association between BAP1 loss and p16 loss, as 26%, 28%, 30%, and 16% of overall cases demonstrated loss of BAP1 alone, loss of p16 alone, loss of both BAP1 and p16, or neither abnormality, respectively. Although multivariate analysis demonstrated that BAP1 IHC is not an independent predictor of prognosis, when viewed in combination with homozygous CDKN2A deletion, risk stratification was evident. More specifically, patients with CDKN2A disomy and loss of BAP1 expression had improved outcomes compared with those with CDKN2A disomy and retained BAP1 expression (hazard ratio, 0.2286; P = .0017), and this finding was notably evident among epithelioid cases. We conclude that BAP1 IHC provides prognostic information within the context of CDKN2A FISH that may have clinical utility beyond diagnosis.


Biomarkers, Tumor , Cyclin-Dependent Kinase Inhibitor p18/genetics , Immunohistochemistry , In Situ Hybridization, Fluorescence , Lung Neoplasms/chemistry , Lung Neoplasms/genetics , Mesothelioma/chemistry , Mesothelioma/genetics , Pleural Neoplasms/chemistry , Pleural Neoplasms/genetics , Tumor Suppressor Proteins/analysis , Ubiquitin Thiolesterase/analysis , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Biopsy , Cyclin-Dependent Kinase Inhibitor p16 , Female , Genetic Predisposition to Disease , Humans , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Male , Mesothelioma/pathology , Mesothelioma/therapy , Mesothelioma, Malignant , Middle Aged , Multivariate Analysis , Phenotype , Pleural Neoplasms/pathology , Pleural Neoplasms/therapy , Predictive Value of Tests , Proportional Hazards Models , Reproducibility of Results , Risk Factors , Tissue Array Analysis
15.
Virchows Arch ; 469(1): 81-91, 2016 Jul.
Article En | MEDLINE | ID: mdl-27173781

Accurate subtyping of renal cell carcinomas (RCCs) has become clinically important for therapy and prognostication. RCC subtypes are defined by distinct morphologic and immunohistochemical profiles, and in some instances recurrent cytogenetic and molecular properties. However, some tumors exhibit overlapping morphologic and immunophenotypic features, frequent enough to pose diagnostic dilemmas. This report concerns six histologically unusual RCCs that showed tubulopapillary architecture, clear cell phenotype, and non-diagnostic immunohistochemical profiles. Further investigation of these tumors utilized a single nucleotide polymorphism (SNP) microarray platform (OncoScan®, Affymetrix) that employed molecular inversion probe (MIP) technology to investigate genome-wide chromosomal copy number changes and loss of heterozygosity in formalin-fixed paraffin-embedded sections. The six tumors were assayed in parallel with and in comparison to RCC with typical morphologic or immunohistochemical features for a specific subtype (clear cell, clear cell papillary, and microphthalmia transcription factor (MiT) family translocation RCC). Three of the unusual RCCs showed a molecular signature of clear cell RCC and one of papillary RCC. The remaining two showed monosomy of chromosome 8. Those two cases were tested via next-generation sequencing, and no pathogenic variants were detected, including those in the genes VHL, PBRM1, SETD2, KDM5C, or BAP1. The addition of molecular investigations such as reported here as applied to histologically and immunohistochemically unusual RCC may help to define additional subtypes and contribute to the development of targeted therapy for renal cancer.


Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Chromosomes, Human, Pair 8/genetics , Monosomy/pathology , Mutation/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Renal Cell/metabolism , Female , Humans , In Situ Hybridization, Fluorescence/methods , Male , Middle Aged , Monosomy/genetics , Phenotype , Translocation, Genetic/genetics
16.
J Pediatr Endocrinol Metab ; 29(5): 523-31, 2016 May 01.
Article En | MEDLINE | ID: mdl-26894574

BACKGROUND: We evaluated a methylation-specific multiplex-ligation-dependent probe amplification (MS-MLPA) assay for the molecular diagnosis of transient neonatal diabetes mellitus (TNDM) caused by 6q24 abnormalities and assessed the clinical utility of using this assay in combination with next generation sequencing (NGS) analysis for diagnosing patients with neonatal diabetes (NDM). METHODS: We performed MS-MLPA in 18 control samples and 42 retrospective NDM cases with normal bi-parental inheritance of chromosome 6. Next, we evaluated 22 prospective patients by combining NGS analysis of 11 NDM genes and the MS-MLPA assay. RESULTS: 6q24 aberrations were identified in all controls and in 19% of patients with normal bi-parental inheritance of chromosome 6. The MS-MLPA/NGS combined approach identified a genetic cause in ~64% of patients with NDM of unknown etiology. CONCLUSIONS: MS-MLPA is a reliable method to identify all known 6q24 abnormalities and comprehensive testing of all causes reveals a causal mutation in ~64% of patients.


Biomarkers/metabolism , DNA Methylation , Diabetes Mellitus/diagnosis , High-Throughput Nucleotide Sequencing/methods , Infant, Newborn, Diseases/diagnosis , Molecular Diagnostic Techniques/methods , Multiplex Polymerase Chain Reaction/methods , Case-Control Studies , Diabetes Mellitus/genetics , Follow-Up Studies , Humans , Infant, Newborn , Infant, Newborn, Diseases/genetics , Polymerase Chain Reaction , Prognosis , Prospective Studies , Retrospective Studies
17.
Cancer Genet ; 208(7-8): 396-403, 2015.
Article En | MEDLINE | ID: mdl-26186983

Chronic myeloid leukemia (CML) is characterized by the breakpoint cluster region (BCR)-Abelson murine leukemia (ABL1) fusion gene. In approximately 1% of CML cases, the Philadelphia chromosome associated with the BCR-ABL1 fusion gene is not present, and the BCR-ABL1 fusion gene is generated by cryptic insertion or sequential translocations. In this study, we describe the cytogenetic and molecular features of five CML patients with cryptic BCR-ABL1 fusion genes using karyotype, fluorescence in situ hybridization (FISH), and whole genome single nucleotide polymorphism array techniques. Two cases of CML in the chronic phase (CP) had a normal karyotype, and three cases of CML in the blast phase (BP) had an abnormal karyotype with neither a typical nor variant t(9;22). By BCR-ABL1 metaphase FISH analysis, we found that fusion signals were localized on chromosomes 9 (3 cases), 22 (1 case), and both 9 and 22 (1 case). In two cases of CML-BP, duplication of the BCR-ABL1 fusion gene occurred as a result of mitotic recombination between homologous chromosomes. Copy number losses involving the IKZF1 gene were observed in two patients with CML-BP. This study demonstrates for the first time the acquisition of additional BCR-ABL1 fusion genes through mitotic recombination in CML with cryptic BCR-ABL1.


Blast Crisis/genetics , Comparative Genomic Hybridization/methods , Fusion Proteins, bcr-abl/genetics , In Situ Hybridization, Fluorescence/methods , Leukemia, Myeloid, Chronic-Phase/genetics , Cytogenetic Analysis , Humans , Karyotype , Models, Genetic , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-bcr/genetics , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction
...