Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464324

RESUMEN

Scaling relationships are key in characterizing complex systems at criticality. In the brain, they are evident in neuronal avalanches-scale-invariant cascades of neuronal activity quantified by power laws. Avalanches manifest at the cellular level as cascades of neuronal groups that fire action potentials simultaneously. Such spatiotemporal synchronization is vital to theories on brain function yet avalanche synchronization is often underestimated when only a fraction of neurons is observed. Here, we investigate biases from fractional sampling within a balanced network of excitatory and inhibitory neurons with all-to-all connectivity and critical branching process dynamics. We focus on how mean avalanche size scales with avalanche duration. For parabolic avalanches, this scaling is quadratic, quantified by the scaling exponent, χ = 2 , reflecting rapid spatial expansion of simultaneous neuronal firing over short durations. However, in networks sampled fractionally, χ is significantly lower. We demonstrate that applying temporal coarse-graining and increasing a minimum threshold for coincident firing restores χ = 2 , even when as few as 0.1% of neurons are sampled. This correction crucially depends on the network being critical and fails for near sub- and supercritical branching dynamics. Using cellular 2-photon imaging, our approach robustly identifies χ = 2 over a wide parameter regime in ongoing neuronal activity from frontal cortex of awake mice. In contrast, the common 'crackling noise' approach fails to determine χ under similar sampling conditions at criticality. Our findings overcome scaling bias from fractional sampling and demonstrate rapid, spatiotemporal synchronization of neuronal assemblies consistent with scale-invariant, parabolic avalanches at criticality.

2.
Sci Rep ; 14(1): 7002, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38523136

RESUMEN

We analyze time-averaged experimental data from in vitro activities of neuronal networks. Through a Pairwise Maximum-Entropy method, we identify through an inverse binary Ising-like model the local fields and interaction couplings which best reproduce the average activities of each neuron as well as the statistical correlations between the activities of each pair of neurons in the system. The specific information about the type of neurons is mainly stored in the local fields, while a symmetric distribution of interaction constants seems generic. Our findings demonstrate that, despite not being directly incorporated into the inference approach, the experimentally observed correlations among groups of three neurons are accurately captured by the derived Ising-like model. Within the context of the thermodynamic analogy inherent to the Ising-like models developed in this study, our findings additionally indicate that these models demonstrate characteristics of second-order phase transitions between ferromagnetic and paramagnetic states at temperatures above, but close to, unity. Considering that the operating temperature utilized in the Maximum-Entropy method is T o = 1 , this observation further expands the thermodynamic conceptual parallelism postulated in this work for the manifestation of criticality in neuronal network behavior.


Asunto(s)
Neuronas , Neuronas/fisiología , Termodinámica , Entropía , Temperatura
3.
Nat Commun ; 14(1): 2555, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137888

RESUMEN

Neurons in the cerebral cortex fire coincident action potentials during ongoing activity and in response to sensory inputs. These synchronized cell assemblies are fundamental to cortex function, yet basic dynamical aspects of their size and duration are largely unknown. Using 2-photon imaging of neurons in the superficial cortex of awake mice, we show that synchronized cell assemblies organize as scale-invariant avalanches that quadratically grow with duration. The quadratic avalanche scaling was only found for correlated neurons, required temporal coarse-graining to compensate for spatial subsampling of the imaged cortex, and suggested cortical dynamics to be critical as demonstrated in simulations of balanced E/I-networks. The corresponding time course of an inverted parabola with exponent of χ = 2 described cortical avalanches of coincident firing for up to 5 s duration over an area of 1 mm2. These parabolic avalanches maximized temporal complexity in the ongoing activity of prefrontal and somatosensory cortex and in visual responses of primary visual cortex. Our results identify a scale-invariant temporal order in the synchronization of highly diverse cortical cell assemblies in the form of parabolic avalanches.


Asunto(s)
Corteza Cerebral , Modelos Neurológicos , Ratones , Animales , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología , Vigilia , Sincronización Cortical
4.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34686597

RESUMEN

Complex body movements require complex dynamics and coordination among neurons in motor cortex. Conversely, a long-standing theoretical notion supposes that if many neurons in motor cortex become excessively synchronized, they may lack the necessary complexity for healthy motor coding. However, direct experimental support for this idea is rare and underlying mechanisms are unclear. Here we recorded three-dimensional body movements and spiking activity of many single neurons in motor cortex of rats with enhanced synaptic inhibition and a transgenic rat model of Rett syndrome (RTT). For both cases, we found a collapse of complexity in the motor system. Reduced complexity was apparent in lower-dimensional, stereotyped brain-body interactions, neural synchrony, and simpler behavior. Our results demonstrate how imbalanced inhibition can cause excessive synchrony among movement-related neurons and, consequently, a stereotyped motor code. Excessive inhibition and synchrony may underlie abnormal motor function in RTT.


Asunto(s)
Encéfalo/fisiopatología , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/fisiología , Actividad Motora/genética , Actividad Motora/fisiología , Síndrome de Rett/genética , Síndrome de Rett/fisiopatología , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/deficiencia , Modelos Neurológicos , Corteza Motora/fisiopatología , Neuronas Motoras/fisiología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Conducta Estereotipada/fisiología
5.
Nat Commun ; 10(1): 1575, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952848

RESUMEN

Cortical neurons can be strongly or weakly coupled to the network in which they are embedded, firing in sync with the majority or firing independently. Both these scenarios have potential computational advantages in motor cortex. Commands to the body might be more robustly conveyed by a strongly coupled population, whereas a motor code with greater information capacity could be implemented by neurons that fire more independently. Which of these scenarios prevails? Here we measure neuron-to-body coupling and neuron-to-population coupling for neurons in motor cortex of freely moving rats. We find that neurons with high and low population coupling coexist, and that population coupling was tunable by manipulating inhibitory signaling. Importantly, neurons with different population coupling tend to serve different functional roles. Those with strong population coupling are not involved with body movement. In contrast, neurons with high neuron-to-body coupling are weakly coupled to other neurons in the cortical population.


Asunto(s)
Modelos Neurológicos , Corteza Motora , Red Nerviosa/fisiología , Neuronas/fisiología , Potenciales de Acción , Animales , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA