Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Biol ; 35(23): 3962-73, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26370512

RESUMEN

The c-Jun amino-terminal kinase (JNK) plays a role in inflammation, proliferation, apoptosis, and cell adhesion and cell migration by phosphorylating paxillin and ß-catenin. JNK phosphorylation downstream of AMP-activated protein kinase (AMPK) activation is required for high CO2 (hypercapnia)-induced Na,K-ATPase endocytosis in alveolar epithelial cells. Here, we provide evidence that during hypercapnia, JNK promotes the phosphorylation of LMO7b, a scaffolding protein, in vitro and in intact cells. LMO7b phosphorylation was blocked by exposing the cells to the JNK inhibitor SP600125 and by infecting cells with dominant-negative JNK or AMPK adenovirus. The knockdown of the endogenous LMO7b or overexpression of mutated LMO7b with alanine substitutions of five potential JNK phosphorylation sites (LMO7b-5SA) or only Ser-1295 rescued both LMO7b phosphorylation and the hypercapnia-induced Na,K-ATPase endocytosis. Moreover, high CO2 promoted the colocalization and interaction of LMO7b and the Na,K-ATPase α1 subunit at the plasma membrane, which were prevented by SP600125 or by transfecting cells with LMO7b-5SA. Collectively, our data suggest that hypercapnia leads to JNK-induced LMO7b phosphorylation at Ser-1295, which facilitates the interaction of LMO7b with Na,K-ATPase at the plasma membrane promoting the endocytosis of Na,K-ATPase in alveolar epithelial cells.


Asunto(s)
Endocitosis , Proteínas de Homeodominio/metabolismo , Hipercapnia/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Dióxido de Carbono/metabolismo , Línea Celular , Activación Enzimática , Proteínas de Homeodominio/análisis , Proteínas de Homeodominio/genética , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/análisis , Datos de Secuencia Molecular , Mutación , Fosforilación , Mapas de Interacción de Proteínas , Ratas , ATPasa Intercambiadora de Sodio-Potasio/análisis , Factores de Transcripción/análisis , Factores de Transcripción/genética
2.
PLoS One ; 7(10): e46696, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056407

RESUMEN

Elevated CO(2) levels (hypercapnia) occur in patients with respiratory diseases and impair alveolar epithelial integrity, in part, by inhibiting Na,K-ATPase function. Here, we examined the role of c-Jun N-terminal kinase (JNK) in CO(2) signaling in mammalian alveolar epithelial cells as well as in diptera, nematodes and rodent lungs. In alveolar epithelial cells, elevated CO(2) levels rapidly induced activation of JNK leading to downregulation of Na,K-ATPase and alveolar epithelial dysfunction. Hypercapnia-induced activation of JNK required AMP-activated protein kinase (AMPK) and protein kinase C-ζ leading to subsequent phosphorylation of JNK at Ser-129. Importantly, elevated CO(2) levels also caused a rapid and prominent activation of JNK in Drosophila S2 cells and in C. elegans. Paralleling the results with mammalian epithelial cells, RNAi against Drosophila JNK fully prevented CO(2)-induced downregulation of Na,K-ATPase in Drosophila S2 cells. The importance and specificity of JNK CO(2) signaling was additionally demonstrated by the ability of mutations in the C. elegans JNK homologs, jnk-1 and kgb-2 to partially rescue the hypercapnia-induced fertility defects but not the pharyngeal pumping defects. Together, these data provide evidence that deleterious effects of hypercapnia are mediated by JNK which plays an evolutionary conserved, specific role in CO(2) signaling in mammals, diptera and nematodes.


Asunto(s)
Dióxido de Carbono/toxicidad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Alveolos Pulmonares/citología , Animales , Linfoma de Burkitt , Caenorhabditis elegans , Drosophila , Activación Enzimática/efectos de los fármacos , Células Epiteliales/metabolismo , Evolución Molecular , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Fosforilación/efectos de los fármacos , Proteína Quinasa C/metabolismo , Ratas , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
3.
J Cell Sci ; 123(Pt 8): 1343-51, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20332111

RESUMEN

Stimulation of Na(+)/K(+)-ATPase translocation to the cell surface increases active Na(+) transport, which is the driving force of alveolar fluid reabsorption, a process necessary to keep the lungs free of edema and to allow normal gas exchange. Here, we provide evidence that insulin increases alveolar fluid reabsorption and Na(+)/K(+)-ATPase activity by increasing its translocation to the plasma membrane in alveolar epithelial cells. Insulin-induced Akt activation is necessary and sufficient to promote Na(+)/K(+)-ATPase translocation to the plasma membrane. Phosphorylation of AS160 by Akt is also required in this process, whereas inactivation of the Rab GTPase-activating protein domain of AS160 promotes partial Na(+)/K(+)-ATPase translocation in the absence of insulin. We found that Rab10 functions as a downstream target of AS160 in insulin-induced Na(+)/K(+)-ATPase translocation. Collectively, these results suggest that Akt plays a major role in Na(+)/K(+)-ATPase intracellular translocation and thus in alveolar fluid reabsorption.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/enzimología , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Insulina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Líquidos Corporales/efectos de los fármacos , Líquidos Corporales/enzimología , Bovinos , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Proteínas de Unión al GTP rab/metabolismo
4.
Mol Cell Biol ; 29(13): 3455-64, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19380482

RESUMEN

Hypoxia promotes Na,K-ATPase endocytosis via protein kinase C zeta (PKC zeta)-mediated phosphorylation of the Na,K-ATPase alpha subunit. Here, we report that hypoxia leads to the phosphorylation of 5'-AMP-activated protein kinase (AMPK) at Thr172 in rat alveolar epithelial cells. The overexpression of a dominant-negative AMPK alpha subunit (AMPK-DN) construct prevented the hypoxia-induced endocytosis of Na,K-ATPase. The overexpression of the reactive oxygen species (ROS) scavenger catalase prevented hypoxia-induced AMPK activation. Moreover, hypoxia failed to activate AMPK in mitochondrion-deficient rho(0)-A549 cells, suggesting that mitochondrial ROS play an essential role in hypoxia-induced AMPK activation. Hypoxia-induced PKC zeta translocation to the plasma membrane and phosphorylation at Thr410 were prevented by the pharmacological inhibition of AMPK or by the overexpression of the AMPK-DN construct. We found that AMPK alpha phosphorylates PKC zeta on residue Thr410 within the PKC zeta activation loop. Importantly, the activation of AMPK alpha was necessary for hypoxia-induced AMPK-PKC zeta binding in alveolar epithelial cells. The overexpression of T410A mutant PKC zeta prevented hypoxia-induced Na,K-ATPase endocytosis, confirming that PKC zeta Thr410 phosphorylation is essential for this process. PKC zeta activation by AMPK is isoform specific, as small interfering RNA targeting the alpha1 but not the alpha2 catalytic subunit prevented PKC zeta activation. Accordingly, we provide the first evidence that hypoxia-generated mitochondrial ROS lead to the activation of the AMPK alpha1 isoform, which binds and directly phosphorylates PKC zeta at Thr410, thereby promoting Na,K-ATPase endocytosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Endocitosis/fisiología , Células Epiteliales/metabolismo , Hipoxia/metabolismo , Proteína Quinasa C/metabolismo , Alveolos Pulmonares/citología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Activación Enzimática , Células Epiteliales/citología , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocondrias/metabolismo , Fosforilación , Proteína Quinasa C/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , ATPasa Intercambiadora de Sodio-Potasio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...