Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202407147, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742485

RESUMEN

Coinage metals Cu, Ag, and Au are essential for modern electronics and their recycling from waste materials is becoming increasingly important to guarantee the security of their supply. Designing new sustainable and selective procedures that would substitute currently used processes is crucial. Here, we describe an unprecedented approach for the sequential dissolution of single metals from Cu, Ag, and Au mixtures using biomass-derived ionic solvents and green oxidants. First, Cu can be selectively dissolved in the presence of Ag and Au with a choline chloride/urea/H2O2 mixture, followed by the dissolution of Ag in lactic acid/H2O2. Finally, the metallic Au, which is not soluble in either solution above, is dissolved in choline chloride/urea/Oxone. Subsequently, the metals were simply and quantitatively recovered from dissolutions, and the solvents were recycled and reused. The applicability of the developed approach was demonstrated by recovering metals from electronic waste substrates such as printed circuit boards, gold fingers, and solar panels. The dissolution reactions and selectivity were explored with different analytical techniques and DFT calculations. We anticipate our approach will pave a new way for the contemporary and sustainable recycling of multi-metal waste substrates.

2.
Int J Biol Macromol ; 266(Pt 1): 131168, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552694

RESUMEN

Pharmaceuticals, designed for treating diseases, ironically endanger humans and aquatic ecosystems as pollutants. Adsorption-based wastewater treatment could address this problem, however, creating efficient adsorbents remains a challenge. Recent efforts have shifted towards sustainable bio-based adsorbents. Here, cryogels from lignin-containing cellulose nanofibrils (LCNF) and lignin nanoparticles (LNPs) were explored as pharmaceuticals adsorbents. An enzyme-based approach using laccase was used for crosslinking instead of fossil-based chemical modification. The impact of laccase treatment on LNPs alone produced surface-crosslinked water-insoluble LNPs with preserved morphology and a hemicellulose-rich, water-soluble LNP fraction. The water-insoluble LNPs displayed a significant increase in adsorption capacity, up to 140 % and 400 % for neutral and cationic drugs, respectively. The crosslinked cryogel prepared by one-pot incubation of LNPs, LCNF and laccase showed significantly higher adsorption capacities for various pharmaceuticals in a multi-component system than pure LCNF or unmodified cryogels. The crosslinking minimized the leaching of LNPs in water, signifying enhanced binding between LNPs and LCNF. In real wastewater, the laccase-modified cryogel displayed 8-44 % removal for cationic pharmaceuticals. Overall, laccase treatment facilitated the production of bio-based adsorbents by improving the deposition of LNPs to LCNF. Finally, this work introduces a sustainable approach for engineering adsorbents, while aligning with global sustainability goals.


Asunto(s)
Celulosa , Criogeles , Lacasa , Lignina , Nanopartículas , Contaminantes Químicos del Agua , Adsorción , Criogeles/química , Lignina/química , Lacasa/química , Celulosa/química , Nanopartículas/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Preparaciones Farmacéuticas/química , Aguas Residuales/química , Reactivos de Enlaces Cruzados/química
3.
Adv Healthc Mater ; 13(15): e2302074, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38499190

RESUMEN

Atherosclerosis still represents a major driver of cardiovascular diseases worldwide. Together with accumulation of lipids in the plaque, inflammation is recognized as one of the key players in the formation and development of atherosclerotic plaque. Systemic anti-inflammatory treatments are successful in reducing the disease burden, but are correlated with severe side effects, underlining the need for targeted formulations. In this work, curcumin is chosen as the anti-inflammatory payload model and further loaded in lignin-based nanoparticles (NPs). The NPs are then coated with a tannic acid (TA)- Fe (III) complex and further cloaked with fragments derived from platelet cell membrane, yielding NPs with homogenous size. The two coatings increase the interaction between the NPs and cells, both endothelial and macrophages, in steady state or inflamed status. Furthermore, NPs are cytocompatible toward endothelial, smooth muscle and immune cells, while not inducing immune activation. The anti-inflammatory efficacy is demonstrated in endothelial cells by real-time quantitative polymerase chain reaction and ELISA assay where curcumin-loaded NPs decrease the expression of Nf-κb, TGF-ß1, IL-6, and IL-1ß in lipopolysaccharide-inflamed cells. Overall, due to the increase in the cell-NP interactions and the anti-inflammatory efficacy, these NPs represent potential candidates for the targeted anti-inflammatory treatment of atherosclerosis.


Asunto(s)
Antiinflamatorios , Aterosclerosis , Plaquetas , Curcumina , Nanopartículas , Curcumina/química , Curcumina/farmacología , Aterosclerosis/tratamiento farmacológico , Humanos , Nanopartículas/química , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Células Endoteliales de la Vena Umbilical Humana , Taninos/química , Taninos/farmacología , Células RAW 264.7 , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo
4.
ACS Omega ; 9(2): 2220-2233, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38250424

RESUMEN

A series of monometallic Ag(I) and Cu(I) halide complexes bearing 2-(diphenylphosphino)pyridine (PyrPhos, L) as a ligand were synthesized and spectroscopically characterized. The structure of most of the derivatives was unambiguously established by X-ray diffraction analysis, revealing the formation of mono-, di-, and tetranuclear complexes having general formulas MXL3 (M = Cu, X = Cl, Br; M = Ag, X = Cl, Br, I), Ag2X2L3 (X = Cl, Br), and Ag4X4L4 (X = Cl, Br, I). The Ag(I) species were compared to the corresponding Cu(I) analogues from a structural point of view. The formation of Cu(I)/Ag(I) heterobimetallic complexes MM'X2L3 (M/M' = Cu, Ag; X = Cl, Br, I) was also investigated. The X-ray structure of the bromo-derivatives revealed the formation of two possible MM'Br2L3 complexes with Cu/Ag ratios, respectively, of 7:1 and 1:7. The ratio between Cu and Ag was studied by scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDX) measurements. The structure of the binuclear homo- and heterometallic derivatives was investigated using density functional theory (DFT) calculations, revealing the tendency of the PyrPhos ligands not to maintain the bridging motif in the presence of Ag(I) as the metal center.

5.
J Environ Manage ; 330: 117210, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608603

RESUMEN

Adsorption is a relatively simple wastewater treatment method that has the potential to mitigate the impacts of pharmaceutical pollution. This requires the development of reusable adsorbents that can simultaneously remove pharmaceuticals of varying chemical structure and properties. Here, the adsorption potential of nanostructured wood-based adsorbents towards different pharmaceuticals in a multi-component system was investigated. The adsorbents in the form of macroporous cryogels were prepared by anchoring lignin nanoparticles (LNPs) to the nanocellulose network via electrostatic attraction. The naturally anionic LNPs were anchored to cationic cellulose nanofibrils (cCNF) and the cationic LNPs (cLNPs) were combined with anionic TEMPO-oxidized CNF (TCNF), producing two sets of nanocellulose-based cryogels that also differed in their overall surface charge density. The cryogels, prepared by freeze-drying, showed layered cellulosic sheets randomly decorated with spherical lignin on the surface. They exhibited varying selectivity and efficiency in removing pharmaceuticals with differing aromaticity, polarity and ionic characters. Their adsorption potential was also affected by the type (unmodified or cationic), amount and morphology of the lignin nanomaterials, as well as the pH of the pharmaceutical solution. Overall, the findings revealed that LNPs or cLNPs can act as functionalizing and crosslinking agents to nanocellulose-based cryogels. Despite the decrease in the overall positive surface charge, the addition of LNPs to the cCNF-based cryogels showed enhanced adsorption, not only towards the anionic aromatic pharmaceutical diclofenac but also towards the aromatic cationic metoprolol (MPL) and tramadol (TRA) and neutral aromatic carbamazepine. The addition of cLNPs to TCNF-based cryogels improved the adsorption of MPL and TRA despite the decrease in the net negative surface charge. The improved adsorption was attributed to modes of removal other than electrostatic attraction, and they could be π-π aromatic ring or hydrophobic interactions brought by the addition of LNPs or cLNPs. However, significant improvement was only found if the ratio of LNPs or cLNPs to nanocellulose was 0.6:1 or higher and with spherical lignin nanomaterials. As crosslinking agents, the LNPs or cLNPs affected the rheological behavior of the gels, and increased the firmness and decreased the water holding capacity of the corresponding cryogels. The resistance of the cryogels towards disintegration with exposure to water also improved with crosslinking, which eventually enabled the cryogels, especially the TCNF-based one, to be regenerated and reused for five cycles of adsorption-desorption experiment for the model pharmaceutical MPL. Thus, this study opened new opportunities to utilize LNPs in providing nanocellulose-based adsorbents with additional functional groups, which were otherwise often achieved by rigorous chemical modifications, at the same time, crosslinking the nanocellulose network.


Asunto(s)
Contaminantes Ambientales , Nanopartículas , Contaminantes Químicos del Agua , Lignina/química , Criogeles/química , Celulosa , Agua , Adsorción , Contaminantes Químicos del Agua/química
6.
J Environ Sci (China) ; 126: 408-422, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503768

RESUMEN

A series of organic compounds were successfully immobilized on an N-doped graphene quantum dot (N-GQD) to prepare a multifunctional organocatalyst for coupling reaction between CO2 and propylene oxide (PO). The simultaneous presence of halide ions in conjunction with acidic- and basic-functional groups on the surface of the nanoparticles makes them highly active for the production of propylene carbonate (PC). The effects of variables such as catalyst loading, reaction temperature, and structure of substituents are discussed. The proposed catalysts were characterized by different techniques, including Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy/energy dispersive X-ray microanalysis (FESEM/EDX), thermogravimetric analysis (TGA), elemental analysis, atomic force microscopy (AFM), and ultraviolet-visible (UV-Vis) spectroscopy. Under optimal reaction conditions, 3-bromopropionic acid (BPA) immobilized on N-GQD showed a remarkable activity, affording the highest yield of 98% at 140°C and 106 Pa without any co-catalyst or solvent. These new metal-free catalysts have the advantage of easy separation and reuse several times. Based on the experimental data, a plausible reaction mechanism is suggested, where the hydrogen bonding donors and halogen ion can activate the epoxide, and amine functional groups play a vital role in CO2 adsorption.


Asunto(s)
Carbono , Grafito , Nitrógeno , Dióxido de Carbono , Carbonatos , Compuestos Epoxi
7.
Adv Healthc Mater ; 12(6): e2202672, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459471

RESUMEN

The oral route is highly desirable for colorectal cancer (CRC) treatment because it allows concentrating the drug in the colon and achieving a localized effect. However, orally administered drugs are often metabolized in the liver, resulting in reduced efficacy and the need for higher doses. Nanoparticle-based drug delivery systems can be engineered to prevent the diffusion of the drug in the stomach, addressing the release at the target site, and enhancing the efficacy of the delivered drug. Here, an orally administrable galunisertib delivery system is developed with gelatin-covered diatomite nanoparticles targeting the ligand 1-cell adhesion molecule (L1-CAM) on metastatic cells, and further encapsulated in an enteric matrix by microfluidics. The gastro-resistant polymer protects the nanoparticles from the action of the digestive enzymes and allows for a sustained release of galunisertib at the intestinal pH. The efficacy of antibody-antigen interactions to drive the internalization of nanoparticles in the targeted cells is investigated in CRC cells expressing abnormal (SW620) or basal levels (Caco-2, HT29-MTX) of L1-CAM. The combination of local drug release and active targeting enhances the effect of the delivered galunisertib, which inhibits the migration of the SW620 cells with greater efficiency compared to the free drug.


Asunto(s)
Neoplasias del Colon , Nanopartículas , Humanos , Células CACO-2 , Microfluídica/métodos , Neoplasias del Colon/tratamiento farmacológico , Nanopartículas/química , Preparaciones Farmacéuticas , Estómago , Sistemas de Liberación de Medicamentos/métodos
8.
Dalton Trans ; 51(48): 18593-18602, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36444942

RESUMEN

In this paper we present laboratory-scale X-ray absorption spectroscopy applied to the research of nanometer-scale thin films. We demonstrate the Cu K edge X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) of CuI and CuO thin films grown with atomic layer deposition. Film thicknesses in the investigated samples ranged from 12 to 248 nm. Even from the thinnest films, XANES spectra can be obtained in 5-20 minutes and EXAFS in 1-4 days. In order to prove the capability of laboratory-based XAS for in situ measurements on thin films, we demonstrate an experiment on in situ oxidation of a 248 nm thick CuI film at a temperature of 240 °C. These methods have important implications for novel and enhanced possibilities for inorganic thin film research.

9.
Nanoscale Adv ; 4(19): 4102-4113, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36285221

RESUMEN

Selective deposition of hybrid and inorganic materials inside nanostructures could enable major nanotechnological advances. However, inserting ready-made composites inside nanocavities may be difficult, and therefore, stepwise approaches are needed. In this paper, a poly(ethyl acrylate) template is grown selectively inside cavities via condensation-controlled toposelective vapor deposition, and the polymer is then hybridized by alumina, titania, or zinc oxide. The hybridization is carried out by infiltrating the polymer with a vapor-phase metalorganic precursor and water vapor either via a short-pulse (atomic layer deposition, ALD) or a long-pulse (vapor phase infiltration, VPI) sequence. When the polymer-MO x hybrid material is calcined at 450 °C in air, an inorganic phase is left as the residue. Various suspected confinement effects are discussed. The infiltration of inorganic materials is reduced in deeper layers of the cavity-grown polymer and is dependent on the cavity geometry. The structure of the inorganic deposition after calcination varies from scattered particles and their aggregates to cavity-capping films or cavity-filling low-density porous deposition, and the inorganic deposition is often anisotropically cracked. A large part of the infiltration is achieved already during the short-pulse experiments with a commercial ALD reactor. Furthermore, the infiltrated polymer is more resistant to dissolution in acetone whereas the inorganic component can still be heavily affected by phosphoric acid.

10.
Dalton Trans ; 51(39): 15142-15157, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36129328

RESUMEN

Atomic layer deposition offers outstanding film uniformity and conformality on substrates with high aspect ratio features. These qualities are essential for mixed-halide perovskite films applied in tandem solar cells, transistors and light-emitting diodes. The optical and electronic properties of mixed-halide perovskites can be adjusted by adjusting the ratios of different halides. So far ALD is only capable of depositing iodine-based halide perovskites whereas other halide processes are lacking. We describe six new low temperature (≤100 °C) ALD processes for PbCl2 and PbBr2 that are crucial steps for the deposition of mixed-halide perovskites with ALD. Lead bis[bis(trimethylsilyl)amide]-GaCl3 and -TiBr4 processes yield the purest, crystalline, uniform and conformal films of PbCl2 and PbBr2 respectively. We show that these two processes in combination with a PbI2 process from the literature deposit mixed lead halide films. The four less optimal processes revealed that reaction by-products in lead halide deposition processes may cause film etching or incorporate themselves into the film.

11.
Anal Biochem ; 647: 114672, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35395223

RESUMEN

Raman spectroscopy together with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS) was employed to characterize exomere- (<50 nm) and exosome-sized (50-80 nm) EVs isolated from human plasma by the novel on-line immunoaffinity chromatography - asymmetric flow field-flow fractionation method. CD9+, CD63+, and CD81+ EVs were selected to represent general EV subpopulations secreted into plasma, while CD61+ EVs represented the specific EV subset derived from platelets. Raman spectroscopy could distinguish EVs from non-EV particles, including apolipoprotein B-100-containing lipoproteins, signifying its potential in EV purity assessment. Moreover, platelet-derived (CD61+) EVs of both exomere and exosome sizes were discriminated from other EV subpopulations due to different biochemical compositions. Further investigations demonstrated composition differences between exomere- and exosome-sized EVs, confirming the applicability of Raman spectroscopy in distinguishing EVs, not only from different origins but also sizes. In addition, fatty acids that act as building blocks for lipids and membranes in EVs were studied by GCxGC-TOF-MS. The results achieved highlighted differences in EV fatty acid compositions in both esterified (membrane lipids) and non-esterified (free fatty acids) fractions, indicating possible differences in membrane structures, biological functions, and roles in cell-to-cell communications of EV subpopulations.


Asunto(s)
Exosomas , Vesículas Extracelulares , Fraccionamiento de Campo-Flujo , Vesículas Extracelulares/química , Cromatografía de Gases y Espectrometría de Masas , Humanos , Espectrometría Raman
12.
Chemphyschem ; 23(7): e202100635, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35130371

RESUMEN

We have identified cellulose solvents, comprised of binary mixtures of molecular solvents and ionic liquids that rapidly dissolve cellulose to high concentration and show upper-critical solution temperature (UCST)-like thermodynamic behaviour - upon cooling and micro phase-separation to roughly spherical microparticle particle-gel mixtures. This is a result of an entropy-dominant process, controllable by changing temperature, with an overall exothermic regeneration step. However, the initial dissolution of cellulose in this system, from the majority cellulose I allomorph upon increasing temperature, is also exothermic. The mixtures essentially act as 'thermo-switchable' gels. Upon initial dissolution and cooling, micro-scaled spherical particles are formed, the formation onset and size of which are dependent on the presence of traces of water. Wide-angle X-ray scattering (WAXS) and 13 C cross-polarisation magic-angle spinning (CP-MAS) NMR spectroscopy have identified that the cellulose micro phase-separates with no remaining cellulose I allomorph and eventually forms a proportion of the cellulose II allomorph after water washing and drying. The rheological properties of these solutions demonstrate the possibility of a new type of cellulose processing, whereby morphology can be influenced by changing temperature.


Asunto(s)
Celulosa , Líquidos Iónicos , Acetatos , Celulosa/química , Dimetilsulfóxido/química , Imidazoles/química , Líquidos Iónicos/química , Lactonas
13.
Angew Chem Int Ed Engl ; 61(14): e202117587, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35106899

RESUMEN

Gold is a scarce element in the Earth's crust but indispensable in modern electronic devices. New, sustainable methods of gold recycling are essential to meet the growing eco-social demand of gold. Here, we describe a simple, inexpensive, and environmentally benign dissolution of gold under mild conditions. Gold dissolves quantitatively in ethanol using 2-mercaptobenzimidazole as a ligand in the presence of a catalytic amount of iodine. Mechanistically, the dissolution of gold begins when I2 oxidizes Au0 and forms a [AuI I2 ]- species, which undergoes subsequent ligand-exchange reactions and forms a stable bis-ligand AuI complex. H2 O2 oxidizes free iodide and regenerated I2 returns back to the catalytic cycle. Addition of a reductant to the reaction mixture precipitates gold quantitatively and partially regenerates the ligand. We anticipate our work will open a new pathway to more sustainable metal recycling with the utilization of just catalytic amounts of reagents and green solvents.

14.
Bioact Mater ; 9: 299-315, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34820572

RESUMEN

Oral insulin delivery could change the life of millions of diabetic patients as an effective, safe, easy-to-use, and affordable alternative to insulin injections, known by an inherently thwarted patient compliance. Here, we designed a multistage nanoparticle (NP) system capable of circumventing the biological barriers that lead to poor drug absorption and bioavailability after oral administration. The nanosystem consists of an insulin-loaded porous silicon NP encapsulated into a pH-responsive lignin matrix, and surface-functionalized with the Fc fragment of immunoglobulin G, which acts as a targeting ligand for the neonatal Fc receptor (FcRn). The developed NPs presented small size (211 ± 1 nm) and narrow size distribution. The NPs remained intact in stomach and intestinal pH conditions, releasing the drug exclusively at pH 7.4, which mimics blood circulation. This formulation showed to be highly cytocompatible, and surface plasmon resonance studies demonstrated that FcRn-targeted NPs present higher capacity to interact and being internalized by the Caco-2 cells, which express FcRn, as demonstrated by Western blot. Ultimately, in vitro permeability studies showed that Fc-functionalized NPs induced an increase in the amount of insulin that permeated across a Caco-2/HT29-MTX co-culture model, showing apparent permeability coefficients (P app ) of 2.37 × 10-6 cm/s, over the 1.66 × 10-6 cm/s observed for their non-functionalized counterparts. Overall, these results demonstrate the potential of these NPs for oral delivery of anti-diabetic drugs.

15.
Adv Mater ; 34(9): e2108012, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34877724

RESUMEN

An alternative strategy of choosing photothermal and weak-immunostimulatory porous silicon@Au nanocomposites as particulate cores to prepare a biomimetic nanovaccine is reported to improve its biosafety and immunotherapeutic efficacy for solid tumors. A quantitative analysis method is used to calculate the loading amount of cancer cell membranes onto porous silicon@Au nanocomposites. Assisted with foreign-body responses, these exogenous nanoparticulate cores with weak immunostimulatory effect can still efficiently deliver cancer cell membranes into dendritic cells to activate them and the downstream antitumor immunity, resulting in no occurrence of solid tumors and the survival of all immunized mice during 55 day observation. In addition, this nanovaccine, as a photothermal therapeutic agent, synergized with additional immunotherapies can significantly inhibit the growth and metastasis of established solid tumors, via the initiation of the antitumor immune responses in the body and the reversion of their immunosuppressive microenvironments. Considering the versatile surface engineering of porous silicon nanoparticles, the strategy developed here is beneficial to construct multifunctional nanovaccines with better biosafety and more diagnosis or therapeutic modalities against the occurrence, recurrence, or metastasis of solid tumors in future clinical practice.


Asunto(s)
Nanocompuestos , Nanopartículas , Neoplasias , Animales , Biomimética/métodos , Inmunoterapia , Ratones , Nanopartículas/uso terapéutico , Neoplasias/terapia , Microambiente Tumoral
16.
RSC Adv ; 11(25): 15245-15257, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35424041

RESUMEN

Nanoscale SnO2 has many important properties ranging from sorption of metal ions to gas sensing. Using a novel electroblowing method followed by calcination, we synthesized SnO2 and composite SnO2/SiO2 submicron fibers with a Sn : Si molar ratio of 3 : 1. Different calcination temperatures and heating rates produced fibers with varying structures and morphologies. In all the fibers SnO2 was detected by XRD indicating the SnO2/SiO2 fibers to be composite instead of complete mixtures. We studied the Co2+ separation ability of the fibers, since 60Co is a problematic contaminant in nuclear power plant wastewaters. Both SnO2 and SnO2/SiO2 fibers had an excellent Co2+ uptake with their highest uptake/K d values being 99.82%/281 000 mL g-1 and 99.79%/234 000 mL g-1, respectively. Compared to the bare SnO2 fibers, the SiO2 component improved the elasticity and mechanical strength of the composite fibers which is advantageous in dynamic column operation.

17.
Anal Chem ; 92(19): 13058-13065, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32893620

RESUMEN

An automated on-line isolation and fractionation system including controlling software was developed for selected nanosized biomacromolecules from human plasma by on-line coupled immunoaffinity chromatography-asymmetric flow field-flow fractionation (IAC-AsFlFFF). The on-line system was versatile, only different monoclonal antibodies, anti-apolipoprotein B-100, anti-CD9, or anti-CD61, were immobilized on monolithic disk columns for isolation of lipoproteins and extracellular vesicles (EVs). The platelet-derived CD61-positive EVs and CD9-positive EVs, isolated by IAC, were further fractionated by AsFlFFF to their size-based subpopulations (e.g., exomeres and exosomes) for further analysis. Field-emission scanning electron microscopy elucidated the morphology of the subpopulations, and 20 free amino acids and glucose in EV subpopulations were identified and quantified in the ng/mL range using hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). The study revealed that there were significant differences between EV origin and size-based subpopulations. The on-line coupled IAC-AsFlFFF system was successfully programmed for reliable execution of 10 sequential isolation and fractionation cycles (37-80 min per cycle) with minimal operator involvement, minimal sample losses, and contamination. The relative standard deviations (RSD) between the cycles for human plasma samples were 0.84-6.6%.


Asunto(s)
Aminoácidos/sangre , Anticuerpos Monoclonales/sangre , Automatización , Cromatografía de Afinidad , Fraccionamiento de Campo-Flujo , Glucosa/análisis , Técnicas de Inmunoadsorción , Cromatografía Liquida , Humanos , Espectrometría de Masas en Tándem
18.
ACS Omega ; 5(11): 6130-6140, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32226896

RESUMEN

The kraft lignin's low molecular weight and too high hydroxyl content hinder its application in bio-based carbon fibers. In this study, we were able to polymerize kraft lignin and reduce the amount of hydroxyl groups by incubating it with the white-rot fungus Obba rivulosa. Enzymatic radical oxidation reactions were hypothesized to induce condensation of lignin, which increased the amount of aromatic rings connected by carbon-carbon bonds. This modification is assumed to be beneficial when aiming for graphite materials such as carbon fibers. Furthermore, the ratio of remaining aliphatic hydroxyls to phenolic hydroxyls was increased, making the structure more favorable for carbon fiber production. When the modified lignin was mixed together with cellulose, the mixture could be spun into intact precursor fibers by using dry-jet wet spinning. The modified lignin leaked less to the spin bath compared with the unmodified lignin starting material, making the recycling of spin-bath solvents easier. The stronger incorporation of modified lignin in the precursor fibers was confirmed by composition analysis, thermogravimetry, and mechanical testing. This work shows how white-rot fungal treatment can be used to modify the structure of lignin to be more favorable for the production of bio-based fiber materials.

19.
Nanotechnology ; 31(19): 195713, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31978899

RESUMEN

Amorphous SiO2-Nb2O5 nanolaminates and mixture films were grown by atomic layer deposition. The films were grown at 300 °C from Nb(OC2H5)5, Si2(NHC2H5)6, and O3 to thicknesses ranging from 13 to 130 nm. The niobium to silicon atomic ratio was varied in the range of 0.11-7.20. After optimizing the composition, resistive switching properties could be observed in the form of characteristic current-voltage behavior. Switching parameters in the conventional regime were well defined only in a SiO2:Nb2O5 mixture at certain, optimized, composition with Nb:Si atomic ratio of 0.13, whereas low-reading voltage measurements allowed recording memory effects in a wider composition range.

20.
ACS Appl Mater Interfaces ; 12(6): 6899-6909, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31967771

RESUMEN

Heart tissue engineering is critical in the treatment of myocardial infarction, which may benefit from drug-releasing smart materials. In this study, we load a small molecule (3i-1000) in new biodegradable and conductive patches for application in infarcted myocardium. The composite patches consist of a biocompatible elastomer, poly(glycerol sebacate) (PGS), coupled with collagen type I, used to promote cell attachment. In addition, polypyrrole is incorporated because of its electrical conductivity and to induce cell signaling. Results from the in vitro experiments indicate a high density of cardiac myoblast cells attached on the patches, which stay viable for at least 1 month. The degradation of the patches does not show any cytotoxic effect, while 3i-1000 delivery induces cell proliferation. Conductive patches show high blood wettability and drug release, correlating with the rate of degradation of the PGS matrix. Together with the electrical conductivity and elongation characteristics, the developed biomaterial fits the mechanical, conductive, and biological demands required for cardiac treatment.


Asunto(s)
Decanoatos/química , Sistemas de Liberación de Medicamentos/métodos , Glicerol/análogos & derivados , Infarto del Miocardio/tratamiento farmacológico , Polímeros/química , Bibliotecas de Moléculas Pequeñas/química , Animales , Sistemas de Liberación de Medicamentos/instrumentación , Conductividad Eléctrica , Glicerol/química , Humanos , Ensayo de Materiales , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Nanopartículas/química , Pirroles/química , Bibliotecas de Moléculas Pequeñas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...