Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38895402

RESUMEN

While mitotic spindle inhibitors specifically kill proliferating tumor cells without the toxicities of microtubule poisons, resistance has limited their clinical utility. Treating glioblastomas with the spindle inhibitors ispinesib, alisertib, or volasertib creates a subpopulation of therapy induced senescent cells that resist these drugs by relying upon the anti-apoptotic and metabolic effects of activated STAT3. Furthermore, these senescent cells expand the repertoire of cells resistant to these drugs by secreting an array of factors, including TGFß, which induce proliferating cells to exit mitosis and become quiescent-a state that also resists spindle inhibitors. Targeting STAT3 restores sensitivity to each of these drugs by depleting the senescent subpopulation and inducing quiescent cells to enter the mitotic cycle. These results support a therapeutic strategy of targeting STAT3-dependent therapy-induced senescence to enhance the efficacy of spindle inhibitors for the treatment of glioblastoma. Highlights: • Resistance to non-microtubule spindle inhibitors limits their efficacy in glioblastoma and depends on STAT3.• Resistance goes hand in hand with development of therapy induced senescence (TIS).• Spindle inhibitor resistant glioblastomas consist of three cell subpopulations-proliferative, quiescent, and TIS-with proliferative cells sensitive and quiescent and TIS cells resistant.• TIS cells secrete TGFß, which induces proliferative cells to become quiescent, thereby expanding the population of resistant cells in a spindle inhibitor resistant glioblastoma• Treatment with a STAT3 inhibitor kills TIS cells and restores sensitivity to spindle inhibitors.

2.
Cell Rep ; 39(12): 110991, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35732128

RESUMEN

Inhibitors of the mitotic kinesin Kif11 are anti-mitotics that, unlike vinca alkaloids or taxanes, do not disrupt microtubules and are not neurotoxic. However, development of resistance has limited their clinical utility. While resistance to Kif11 inhibitors in other cell types is due to mechanisms that prevent these drugs from disrupting mitosis, we find that in glioblastoma (GBM), resistance to the Kif11 inhibitor ispinesib works instead through suppression of apoptosis driven by activation of STAT3. This form of resistance requires dual phosphorylation of STAT3 residues Y705 and S727, mediated by SRC and epidermal growth factor receptor (EGFR), respectively. Simultaneously inhibiting SRC and EGFR reverses this resistance, and combined targeting of these two kinases in vivo with clinically available inhibitors is synergistic and significantly prolongs survival in ispinesib-treated GBM-bearing mice. We thus identify a translationally actionable approach to overcoming Kif11 inhibitor resistance that may work to block STAT3-driven resistance against other anti-cancer therapies as well.


Asunto(s)
Antimitóticos , Glioblastoma , Animales , Antimitóticos/farmacología , Línea Celular Tumoral , Receptores ErbB/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Cinesinas , Ratones , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
3.
Cell Rep ; 37(8): 110054, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34818553

RESUMEN

We report that atypical protein kinase Cι (PKCι) is an oncogenic driver of glioblastoma (GBM). Deletion or inhibition of PKCι significantly impairs tumor growth and prolongs survival in murine GBM models. GBM cells expressing elevated PKCι signaling are sensitive to PKCι inhibitors, whereas those expressing low PKCι signaling exhibit active SRC signaling and sensitivity to SRC inhibitors. Resistance to the PKCι inhibitor auranofin is associated with activated SRC signaling and response to a SRC inhibitor, whereas resistance to a SRC inhibitor is associated with activated PKCι signaling and sensitivity to auranofin. Interestingly, PKCι- and SRC-dependent cells often co-exist in individual GBM tumors, and treatment of GBM-bearing mice with combined auranofin and SRC inhibitor prolongs survival beyond either drug alone. Thus, we identify PKCι and SRC signaling as distinct therapeutic vulnerabilities that are directly translatable into an improved treatment for GBM.


Asunto(s)
Glioblastoma/genética , Glioblastoma/metabolismo , Isoenzimas/metabolismo , Proteína Quinasa C/metabolismo , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/clasificación , Humanos , Isoenzimas/genética , Ratones , Oncogenes/genética , Proteína Quinasa C/genética , Proteína Quinasa C/fisiología , Transducción de Señal/fisiología
4.
iScience ; 23(12): 101802, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33299973

RESUMEN

Invasion and proliferation are defining phenotypes of cancer, and in glioblastoma blocking one stimulates the other, implying that effective therapy must inhibit both, ideally through a single target that is also dispensable for normal tissue function. The molecular motor myosin 10 meets these criteria. Myosin 10 knockout mice can survive to adulthood, implying that normal cells can compensate for its loss; its deletion impairs invasion, slows proliferation, and prolongs survival in murine models of glioblastoma. Myosin 10 deletion also enhances tumor dependency on the DNA damage and the metabolic stress responses and induces synthetic lethality when combined with inhibitors of these processes. Our results thus demonstrate that targeting myosin 10 is active against glioblastoma by itself, synergizes with other clinically available therapeutics, may have acceptable side effects in normal tissues, and has potential as a heretofore unexplored therapeutic approach for this disease.

5.
Sci Rep ; 10(1): 6524, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32300151

RESUMEN

Glioblastoma, the most lethal primary brain cancer, is extremely proliferative and invasive. Tumor cells at tumor/brain-interface often exist behind a functionally intact blood-brain barrier (BBB), and so are shielded from exposure to therapeutic drug concentrations. An ideal glioblastoma treatment needs to engage targets that drive proliferation as well as invasion, with brain penetrant therapies. One such target is the mitotic kinesin KIF11, which can be inhibited with ispinesib, a potent molecularly-targeted drug. Although, achieving durable brain exposures of ispinesib is critical for adequate tumor cell engagement during mitosis, when tumor cells are vulnerable, for efficacy. Our results demonstrate that the delivery of ispinesib is restricted by P-gp and Bcrp efflux at BBB. Thereby, ispinesib distribution is heterogeneous with concentrations substantially lower in invasive tumor rim (intact BBB) compared to glioblastoma core (disrupted BBB). We further find that elacridar-a P-gp and Bcrp inhibitor-improves brain accumulation of ispinesib, resulting in remarkably reduced tumor growth and extended survival in a rodent model of glioblastoma. Such observations show the benefits and feasibility of pairing a potentially ideal treatment with a compound that improves its brain accumulation, and supports use of this strategy in clinical exploration of cell cycle-targeting therapies in brain cancers.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Benzamidas/farmacología , Proliferación Celular/efectos de los fármacos , Cinesinas/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Quinazolinas/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Acridinas/química , Acridinas/farmacología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glioblastoma/genética , Glioblastoma/patología , Humanos , Cinesinas/genética , Ratones , Terapia Molecular Dirigida , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Proteínas de Neoplasias/antagonistas & inhibidores , Tetrahidroisoquinolinas/química , Tetrahidroisoquinolinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Proc Natl Acad Sci U S A ; 116(31): 15550-15559, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31235578

RESUMEN

The ability of glioblastoma to disperse through the brain contributes to its lethality, and blocking this behavior has been an appealing therapeutic approach. Although a number of proinvasive signaling pathways are active in glioblastoma, many are redundant, so targeting one can be overcome by activating another. However, these pathways converge on nonredundant components of the cytoskeleton, and we have shown that inhibiting one of these-the myosin II family of cytoskeletal motors-blocks glioblastoma invasion even with simultaneous activation of multiple upstream promigratory pathways. Myosin IIA and IIB are the most prevalent isoforms of myosin II in glioblastoma, and we now show that codeleting these myosins markedly impairs tumorigenesis and significantly prolongs survival in a rodent model of this disease. However, while targeting just myosin IIA also impairs tumor invasion, it surprisingly increases tumor proliferation in a manner that depends on environmental mechanics. On soft surfaces myosin IIA deletion enhances ERK1/2 activity, while on stiff surfaces it enhances the activity of NFκB, not only in glioblastoma but in triple-negative breast carcinoma and normal keratinocytes as well. We conclude myosin IIA suppresses tumorigenesis in at least two ways that are modulated by the mechanics of the tumor and its stroma. Our results also suggest that inhibiting tumor invasion can enhance tumor proliferation and that effective therapy requires targeting cellular components that drive both proliferation and invasion simultaneously.


Asunto(s)
Carcinogénesis/metabolismo , Citoesqueleto/metabolismo , Glioblastoma/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Citoesqueleto/genética , Citoesqueleto/patología , Glioblastoma/genética , Glioblastoma/patología , Ratones , Proteínas de Neoplasias/genética , Miosina Tipo IIA no Muscular/genética
7.
Sci Rep ; 7(1): 9350, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28839258

RESUMEN

Tumor hypoxia is an established facilitator of survival adaptation and mesenchymal transformation in glioblastoma (GBM). The underlying mechanisms that direct hypoxia-mediated survival in GBM habitats are unclear. We previously identified BIRC3 as a mediator of therapeutic resistance in GBM to standard temozolomide (TMZ) chemotherapy and radiotherapy (RT). Here we report that BIRC3 is a biomarker of the hypoxia-mediated adaptive mesenchymal phenotype of GBM. Specifically, in the TCGA dataset elevated BIRC3 gene expression was identified as a superior and selective biomarker of mesenchymal GBM versus neural, proneural and classical subtypes. Further, BIRC3 protein was highly expressed in the tumor cell niches compared to the perivascular niche across multiple regions in GBM patient tissue microarrays. Tumor hypoxia was found to mechanistically induce BIRC3 expression through HIF1-alpha signaling in GBM cells. Moreover, in human GBM xenografts robust BIRC3 expression was noted within hypoxic regions of the tumor. Importantly, selective inhibition of BIRC3 reversed therapeutic resistance of GBM cells to RT in hypoxic microenvironments through enhanced activation of caspases. Collectively, we have uncovered a novel role for BIRC3 as a targetable biomarker and mediator of hypoxia-driven habitats in GBM.


Asunto(s)
Proteína 3 que Contiene Repeticiones IAP de Baculovirus/genética , Glioblastoma/genética , Hipoxia/genética , Animales , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/metabolismo , Biomarcadores , Caspasas/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Pronóstico , Tolerancia a Radiación/genética , Microambiente Tumoral/genética
8.
Genes Dev ; 31(10): 1036-1053, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28637693

RESUMEN

We recently identified pathogenic KIF1Bß mutations in sympathetic nervous system malignancies that are defective in developmental apoptosis. Here we deleted KIF1Bß in the mouse sympathetic nervous system and observed impaired sympathetic nervous function and misexpression of genes required for sympathoadrenal lineage differentiation. We discovered that KIF1Bß is required for nerve growth factor (NGF)-dependent neuronal differentiation through anterograde transport of the NGF receptor TRKA. Moreover, pathogenic KIF1Bß mutations identified in neuroblastoma impair TRKA transport. Expression of neuronal differentiation markers is ablated in both KIF1Bß-deficient mouse neuroblasts and human neuroblastomas that lack KIF1Bß. Transcriptomic analyses show that unfavorable neuroblastomas resemble mouse sympathetic neuroblasts lacking KIF1Bß independent of MYCN amplification and the loss of genes neighboring KIF1B on chromosome 1p36. Thus, defective precursor cell differentiation, a common trait of aggressive childhood malignancies, is a pathogenic effect of KIF1Bß loss in neuroblastomas. Furthermore, neuropathy-associated KIF1Bß mutations impede cargo transport, providing a direct link between neuroblastomas and neurodegeneration.


Asunto(s)
Diferenciación Celular/genética , Cinesinas/genética , Cinesinas/metabolismo , Neuroblastoma/genética , Neuronas/citología , Receptor trkA/metabolismo , Animales , Apoptosis/genética , Línea Celular Tumoral , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Mutación , Neuroblastoma/fisiopatología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Células PC12 , Ratas , Transducción de Señal/genética , Sistema Nervioso Simpático/citología , Proteínas ras/genética
9.
Melanoma Res ; 26(5): 481-6, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27285292

RESUMEN

Uveal melanoma is a rare subtype of melanoma, accounting for only 3-5% of all melanoma cases in the USA. Although fewer than 4% of uveal melanoma patients present with metastasis at diagnosis, approximately half will develop metastasis, more than 90% of which disseminate to the liver. Infrequently, a number of malignancies can lead to leptomeningeal metastases, a devastating and terminal complication. In this case report, we present an exceedingly rare case of a patient with uveal melanoma who developed leptomeningeal carcinomatosis as the sole site of metastasis. After conventional methods to diagnose leptomeningeal carcinomatosis fell short, a diagnosis was confirmed on the basis of identification and genomic analysis of melanoma circulating tumor cells in the cerebrospinal fluid.


Asunto(s)
Melanoma/complicaciones , Carcinomatosis Meníngea/etiología , Neoplasias Cutáneas/complicaciones , Neoplasias de la Úvea/complicaciones , Femenino , Humanos , Melanoma/patología , Persona de Mediana Edad , Neoplasias Cutáneas/patología , Neoplasias de la Úvea/patología
10.
Oncotarget ; 7(23): 34229-39, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27097110

RESUMEN

Neuroblastoma is an aggressive, relapse-prone childhood tumor of the sympathetic nervous system. Current treatment modalities do not fully exploit the genetic basis between the different molecular subtypes and little is known about the targets discovered in recent mutational and genetic studies. Neuroblastomas with poor prognosis are often characterized by 1p36 deletion, containing the kinesin gene KIF1B. Its beta isoform, KIF1Bß, is required for NGF withdrawal-dependent apoptosis, mediated by the induction of XIAP-associated Factor 1 (XAF1). Here, we showed that XAF1 low expression correlates with poor survival and disease status. KIF1Bß deletion results in loss of XAF1 expression, suggesting that XAF1 is indeed a downstream target of KIF1Bß. XAF1 silencing protects from NGF withdrawal and from KIF1Bß-mediated apoptosis. Overexpression of XAF1 impairs tumor progression whereas knockdown of XAF1 promotes tumor growth, suggesting that XAF1 may be a candidate tumor suppressor in neuroblastoma and its associated pathway may be important for developing future interventions.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinesinas/metabolismo , Proteínas de Neoplasias/metabolismo , Neuroblastoma/patología , Proteínas Adaptadoras Transductoras de Señales , Animales , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis , Biomarcadores de Tumor/análisis , Línea Celular Tumoral , Proteínas F-Box/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Xenoinjertos , Humanos , Estimación de Kaplan-Meier , Ratones , Ratones Noqueados , Neuroblastoma/metabolismo , Neuroblastoma/mortalidad , Pronóstico , Proteínas Supresoras de Tumor/metabolismo
11.
Int J Cancer ; 139(6): 1195-201, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27084046

RESUMEN

Melanoma frequently metastasizes to the brain, with CNS involvement being clinically evident in ∼30% of patients (as high as 75% at autopsy). In ∼5% cases melanoma cells also metastasize to the leptomeninges, the sub-arachnoid space and cerebrospinal fluid (CSF). Patients with leptomeningeal melanoma metastases (LMM) have the worst prognosis and are characterized by rapid disease progression (mean survival 8-10 weeks) and a death from neurological causes. The recent years have seen tremendous progress in the development of targeted and immune therapies for melanoma that has translated into an increased survival benefit. Despite these gains, the majority of patients fail therapy and there is a suspicion that the brain and the leptomeninges are a "sanctuary" sites for melanoma cells that escape both targeted therapy and immunologic therapies. Emerging evidence suggests that (1) Cancer cells migrating to the CNS may have unique molecular properties and (2) the CNS/leptomeningeal microenvironment represents a pro-survival niche that influences therapeutic response. In this Mini-Review, we will outline the clinical course of LMM development and will describe how the intracranial immune and cellular microenvironments offer both opportunities and challenges for the successful management of this disease. We will further discuss the latest data demonstrating the potential use of BRAF inhibitors and immune therapy in the management of LMM, and will review future potential therapeutic strategies for the management of this most devastating complication of advanced melanoma.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Inmunoterapia , Melanoma/patología , Neoplasias Meníngeas/secundario , Neoplasias Meníngeas/terapia , Terapia Molecular Dirigida , Animales , Biomarcadores de Tumor/antagonistas & inhibidores , Manejo de la Enfermedad , Progresión de la Enfermedad , Humanos , Melanoma/metabolismo , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/mortalidad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/metabolismo
12.
Neuro Oncol ; 18(8): 1088-1098, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26962017

RESUMEN

BACKGROUND: Myxoma virus (MYXV) is a promising oncolytic agent and is highly effective against immortalized glioma cells but less effective against brain tumor initiating cells (BTICs), which are believed to mediate glioma development/recurrence. MYXV encodes various proteins to attenuate host cell apoptosis, including an antiapoptotic Bcl-2 homologue known as M011L. Such proteins may limit the ability of MYXV to kill BTICs, which have heightened resistance to apoptosis. We hypothesized that infecting BTICs with an M011L-deficient MYXV construct would overcome BTIC resistance to MYXV. METHODS: We used patient-derived BTICs to evaluate the efficacy of M011L knockout virus (vMyx-M011L-KO) versus wild-type MYXV (vMyx-WT) and characterized the mechanism of virus-induced cell death in vitro. To extend our findings in a novel immunocompetent animal model, we derived, cultured, and characterized a C57Bl/6J murine BTIC (mBTIC0309) from a spontaneous murine glioma and evaluated vMyx-M011L-KO efficacy with and without temozolomide (TMZ) in mBTIC0309-bearing mice. RESULTS: We demonstrated that vMyx-M011L-KO induces apoptosis in BTICs, dramatically increasing sensitivity to the virus. vMyx-WT failed to induce apoptosis as M011L protein prevented Bax activation and cytochrome c release. In vivo, intracranial implantation of mBTIC0309 generated tumors that closely recapitulated the pathological and molecular profile of human gliomas. Treatment of tumor-bearing mice with vMyx-M011L-KO significantly prolonged survival in immunocompetent-but not immunodeficient-mouse models, an effect that is significantly enhanced in combination with TMZ. CONCLUSIONS: Our data suggest that vMyx-M011L-KO is an effective, well-tolerated, proapoptotic oncolytic virus and a strong candidate for clinical translation.

13.
Sci Rep ; 6: 21710, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26888114

RESUMEN

Genome-wide analysis of glioblastoma (GBM) reveals pervasive aberrations in apoptotic signaling pathways that collectively contribute to therapeutic resistance. Inhibitors of apoptosis proteins (IAP) exert critical control on the terminal segment of apoptosis leading to apoptosis evasion. In this study, we uncover a unique role for BIRC3, as an IAP that is critical in GBM in response to therapy. Using the TCGA dataset of 524 unique samples, we identify BIRC3 is the only IAP whose differential expression is associated with long-term survival in GBM patients. Using patient tissue samples we further show that BIRC3 expression increases with recurrence. When extrapolated to a preclinical model of a human GBM cell line, we find an increase in BIRC3 expression in response to irradiation (RT) and temozolomide (TMZ) treatment. More importantly, we mechanistically implicate STAT3 and PI3K signaling pathways as drivers of RT-induced up-regulation of BIRC3 expression. Lastly, we demonstrate that both in-vivo and in-vitro BIRC3 up-regulation results in apoptosis evasion and therapeutic resistance in GBM. Collectively, our study identifies a novel translational and targetable role for BIRC3 expression as a predictor of aggressiveness and therapeutic resistance to TMZ and RT mediated by STAT3 and PI3K signaling in GBM.


Asunto(s)
Neoplasias Encefálicas/terapia , Resistencia a Antineoplásicos , Glioblastoma/terapia , Proteínas Inhibidoras de la Apoptosis/genética , Recurrencia Local de Neoplasia/genética , Tolerancia a Radiación , Ubiquitina-Proteína Ligasas/genética , Animales , Proteína 3 que Contiene Repeticiones IAP de Baculovirus , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Dacarbazina/administración & dosificación , Dacarbazina/análogos & derivados , Dacarbazina/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Radioterapia , Factor de Transcripción STAT3/metabolismo , Análisis de Supervivencia , Temozolomida , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Dev Cell ; 36(2): 164-78, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26812016

RESUMEN

KIF1Bß is a candidate 1p36 tumor suppressor that regulates apoptosis in the developing sympathetic nervous system. We found that KIF1Bß activates the Ca(2+)-dependent phosphatase calcineurin (CN) by stabilizing the CN-calmodulin complex, relieving enzymatic autoinhibition and enabling CN substrate recognition. CN is the key mediator of cellular responses to Ca(2+) signals and its deregulation is implicated in cancer, cardiac, neurodegenerative, and immune disease. We show that KIF1Bß affects mitochondrial dynamics through CN-dependent dephosphorylation of Dynamin-related protein 1 (DRP1), causing mitochondrial fission and apoptosis. Furthermore, KIF1Bß actuates recognition of all known CN substrates, implying a general mechanism for KIF1Bß in Ca(2+) signaling and how Ca(2+)-dependent signaling is executed by CN. Pathogenic KIF1Bß mutations previously identified in neuroblastomas and pheochromocytomas all fail to activate CN or stimulate DRP1 dephosphorylation. Importantly, KIF1Bß and DRP1 are silenced in 1p36 hemizygous-deleted neuroblastomas, indicating that deregulation of calcineurin and mitochondrial dynamics contributes to high-risk and poor-prognosis neuroblastoma.


Asunto(s)
Apoptosis/genética , Calcineurina/genética , GTP Fosfohidrolasas/genética , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/genética , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación/genética , Dinaminas , Genes Supresores de Tumor/fisiología , Humanos , Cinesinas/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Fosforilación , Transducción de Señal/genética
15.
Neuro Oncol ; 17(8): 1086-94, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25605818

RESUMEN

BACKGROUND: Brain tumor-initiating cells (BTICs) are stem-like cells hypothesized to form a disease reservoir that mediates tumor recurrence in high-grade gliomas. Oncolytic virotherapy uses replication-competent viruses to target and kill malignant cells and has been evaluated in clinic for glioma therapy with limited results. Myxoma virus (MyxV) is a safe and highly effective oncolytic virus (OV) in conventional glioma models but, as seen with other OVs, is only modestly effective for patient-derived BTICs. The objective of this study was to determine whether MyxV treatment against human BTICs could be improved by combining chemotherapeutics and virotherapy. METHODS: A 73-compound library of drug candidates in clinical use or preclinical development was screened to identify compounds that sensitize human BTICs to MyxV treatment in vitro, and synergy was evaluated mathematically in lead compounds using Chou-Talalay analyses. The effects of combination therapy on viral gene expression and viral replication were also assessed. RESULTS: Eleven compounds that enhance MyxV efficacy were identified, and 6 were shown to synergize with the virus using Chou-Talalay analyses. Four of the synergistic compounds were shown to significantly increase viral gene expression, indicating a potential mechanism for synergy. Three highly synergistic compounds (axitinib, a VEGFR inhibitor; rofecoxib, a cyclooxygenase-2 inhibitor; and pemetrexed, a folate anti-metabolite) belong to classes of compounds that have not been previously shown to synergize with oncolytic viruses in vitro. CONCLUSIONS: This study has identified multiple novel drug candidates that synergistically improve MyxV efficacy in a preclinical BTIC glioma model.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/virología , Viroterapia Oncolítica , Antineoplásicos/administración & dosificación , Axitinib , Neoplasias Encefálicas/virología , Línea Celular Tumoral , Terapia Combinada , Glioblastoma/virología , Humanos , Imidazoles/administración & dosificación , Imidazoles/uso terapéutico , Técnicas In Vitro , Indazoles/administración & dosificación , Indazoles/uso terapéutico , Myxoma virus/genética , Myxoma virus/fisiología , Virus Oncolíticos/genética , Virus Oncolíticos/fisiología , Bibliotecas de Moléculas Pequeñas
16.
J Biol Chem ; 290(6): 3814-24, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25538243

RESUMEN

Neurotrophins and their receptors are frequently expressed in malignant gliomas, yet their functions are largely unknown. Previously, we have shown that p75 neurotrophin receptor is required for glioma invasion and proliferation. However, the role of Trk receptors has not been examined. In this study, we investigated the importance of TrkB and TrkC in survival of brain tumor-initiating cells (BTICs). Here, we show that human malignant glioma tissues and also tumor-initiating cells isolated from fresh human malignant gliomas express the neurotrophin receptors TrkB and TrkC, not TrkA, and they also express neurotrophins NGF, BDNF, and neurotrophin 3 (NT3). Specific activation of TrkB and TrkC receptors by ligands BDNF and NT3 enhances tumor-initiating cell viability through activation of ERK and Akt pathways. Conversely, TrkB and TrkC knockdown or pharmacologic inhibition of Trk signaling decreases neurotrophin-dependent ERK activation and BTIC growth. Further, pharmacological inhibition of both ERK and Akt pathways blocked BDNF, and NT3 stimulated BTIC survival. Importantly, attenuation of BTIC growth by EGFR inhibitors could be overcome by activation of neurotrophin signaling, and neurotrophin signaling is sufficient for long term BTIC growth as spheres in the absence of EGF and FGF. Our results highlight a novel role for neurotrophin signaling in brain tumor and suggest that Trks could be a target for combinatorial treatment of malignant glioma.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Sistema de Señalización de MAP Quinasas , Células Madre Neoplásicas/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Masculino , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/fisiología , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/farmacología , Receptor trkB/genética , Receptor trkC/genética
17.
J Biol Chem ; 289(12): 8067-85, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24519935

RESUMEN

Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Neoplasias Encefálicas/metabolismo , Encéfalo/patología , Glioma/metabolismo , Células Madre Neoplásicas/patología , Factores de Crecimiento Nervioso/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Técnicas de Silenciamiento del Gen , Glioma/genética , Glioma/patología , Humanos , Mutación , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Receptor de Factor de Crecimiento Nervioso/genética
18.
Cancer Discov ; 4(4): 434-51, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24469107

RESUMEN

UNLABELLED: Inherited KIF1B loss-of-function mutations in neuroblastomas and pheochromocytomas implicate the kinesin KIF1B as a 1p36.2 tumor suppressor. However, the mechanism of tumor suppression is unknown. We found that KIF1B isoform ß (KIF1Bß) interacts with RNA helicase A (DHX9), causing nuclear accumulation of DHX9, followed by subsequent induction of the proapoptotic XIAP-associated factor 1 (XAF1) and, consequently, apoptosis. Pheochromocytoma and neuroblastoma arise from neural crest progenitors that compete for growth factors such as nerve growth factor (NGF) during development. KIF1Bß is required for developmental apoptosis induced by competition for NGF. We show that DHX9 is induced by and required for apoptosis stimulated by NGF deprivation. Moreover, neuroblastomas with chromosomal deletion of 1p36 exhibit loss of KIF1Bß expression and impaired DHX9 nuclear localization, implicating the loss of DHX9 nuclear activity in neuroblastoma pathogenesis. SIGNIFICANCE: KIF1Bß has neuroblastoma tumor-suppressor properties and promotes and requires nuclear-localized DHX9 for its apoptotic function by activating XAF1 expression. Loss of KIF1Bß alters subcellular localization of DHX9 and diminishes NGF dependence of sympathetic neurons, leading to reduced culling of neural progenitors, and, therefore, might predispose to tumor formation.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Cinesinas/metabolismo , Proteínas de Neoplasias/metabolismo , Factor de Crecimiento Nervioso/genética , Neuroblastoma/genética , Animales , Apoptosis , Núcleo Celular/metabolismo , Cromosomas Humanos Par 1 , ARN Helicasas DEAD-box/genética , Humanos , Carioferinas/metabolismo , Cinesinas/genética , Ratones , Ratones Endogámicos C57BL , Proteínas de Neoplasias/genética , Células PC12 , Ratas , Eliminación de Secuencia , Sistema Nervioso Simpático/metabolismo , Células Tumorales Cultivadas
19.
Cancer Control ; 20(4): 298-306, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24077406

RESUMEN

BACKGROUND: The development of brain metastases is common in patients with melanoma and is associated with a poor prognosis. Treating patients with melanoma brain metastases (MBMs) is a major therapeutic challenge. Standard approaches with conventional chemotherapy are disappointing, while surgery and radiotherapy have improved outcomes. METHODS: In this article, we discuss the biology of MBMs, briefly outline current treatment approaches, and emphasize novel and emerging therapies for MBMs. RESULTS: The mechanisms that underlie the metastases of melanoma to the brain are unknown; therefore, it is necessary to identify pathways to target MBMs. Most patients with MBMs have short survival times. Recent use of immune-based and targeted therapies has changed the natural history of metastatic melanoma and may be effective for the treatment of patients with MBMs. CONCLUSIONS: Developing a better understanding of the factors responsible for MBMs will lead to improved management of this disease. In addition, determining the optimal treatments for MBMs and how they can be optimized or combined with other therapies, along with appropriate patient selection, are challenges for the management of this disease.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/terapia , Melanoma/patología , Melanoma/terapia , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/terapia , Animales , Humanos
20.
Endocr Relat Cancer ; 18(1): 73-83, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20959442

RESUMEN

Germline mutations in the von Hippel-Lindau disease (VHL) and succinate dehydrogenase subunit B (SDHB) genes can cause inherited phaeochromocytoma and/or renal cell carcinoma (RCC). Dysregulation of the hypoxia-inducible factor (HIF) transcription factors has been linked to VHL and SDHB-related RCC; both HIF dysregulation and disordered function of a prolyl hydroxylase domain isoform 3 (PHD3/EGLN3)-related pathway of neuronal apoptosis have been linked to the development of phaeochromocytoma. The 2-oxoglutarate-dependent prolyl hydroxylase enzymes PHD1 (EGLN2), PHD2 (EGLN1) and PHD3 (EGLN3) have a key role in regulating the stability of HIF-α subunits (and hence expression of the HIF-α transcription factors). A germline PHD2 mutation has been reported in association with congenital erythrocytosis and recurrent extra-adrenal phaeochromocytoma. We undertook mutation analysis of PHD1, PHD2 and PHD3 in two cohorts of patients with features of inherited phaeochromocytoma (n=82) and inherited RCC (n=64) and no evidence of germline mutations in known susceptibility genes. No confirmed pathogenic mutations were detected suggesting that mutations in these genes are not a frequent cause of inherited phaeochromocytoma or RCC.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/genética , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Feocromocitoma/genética , Procolágeno-Prolina Dioxigenasa/genética , Adolescente , Neoplasias de las Glándulas Suprarrenales/metabolismo , Adulto , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Secuencia de Bases , Carcinoma de Células Renales/metabolismo , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Renales/metabolismo , Masculino , Datos de Secuencia Molecular , Fenotipo , Feocromocitoma/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Ratas , Ratas Sprague-Dawley , Homología de Secuencia de Aminoácido , Células Tumorales Cultivadas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...