Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
Article En | MEDLINE | ID: mdl-38366632

OBJECTIVES: To investigate the prognostic utility of 28 serum biomarkers in systemic sclerosis (SSc), SSc-associated interstitial lung disease (SSc-ILD) and clinically relevant disease subgroups. METHODS: Participants with sera, high-resolution computed tomography, and lung function within 12 months of baseline were identified from the Australian Scleroderma Cohort Study. Baseline was the time of serum collection. 27 of the prespecified 28 serum biomarkers were analysed and biomarker associations with mortality and ILD progression were investigated in univariable and multivariable analyses, including within disease subgroups and combined with established risk factors for poorer prognosis in SSc. RESULTS: 407 participants were identified, 252 (61.9%) with SSc-ILD. The median follow up after biomarker measurement was 6.31 (3.11-9.22) years. 16 biomarkers were associated with increased mortality. High levels of VCAM-1 were most strongly associated with mortality (HR 3.55; 95%CI 2.37-5.33; p< 0.001). Five additional biomarkers had a HR > 2: SP-D (2.28, 1.57-3.31; p< 0.001), E-selectin (2.19; 1.53-3.14; p< 0.001), IL-6 (2.15 1.50-3.09; p< 0.001), MMP3 (1.42-2.95; p< 0.001) and ET-1 (2.03, 1.40-2.92; p< 0.001). 11 biomarkers were independently associated with mortality following adjustment for sex, age and baseline forced vital capacity (FVC%predicted). Three biomarkers were associated with ILD progression at one year follow up: CXCL4 (OR 2.67, 1.46-4.88; p= 0.001), MMP-1 (2.56, 1.43-4.59; p= 0.002) and ET-1 (2.18, 1.24-3.83; p= 0.007). CONCLUSION: Multiple biomarkers, especially VCAM-1, E-Selectin, SP-D and CXCL4, provide prognostic utility beyond that of established risk factors for patients with SSc.

2.
Ann Rheum Dis ; 82(7): 887-896, 2023 07.
Article En | MEDLINE | ID: mdl-36987655

The 'MHC-I (major histocompatibility complex class I)-opathy' concept describes a family of inflammatory conditions with overlapping clinical manifestations and a strong genetic link to the MHC-I antigen presentation pathway. Classical MHC-I-opathies such as spondyloarthritis, Behçet's disease, psoriasis and birdshot uveitis are widely recognised for their strong association with certain MHC-I alleles and gene variants of the antigen processing aminopeptidases ERAP1 and ERAP2 that implicates altered MHC-I peptide presentation to CD8+T cells in the pathogenesis. Progress in understanding the cause and treatment of these disorders is hampered by patient phenotypic heterogeneity and lack of systematic investigation of the MHC-I pathway.Here, we discuss new insights into the biology of MHC-I-opathies that strongly advocate for disease-overarching and integrated molecular and clinical investigation to decipher underlying disease mechanisms. Because this requires transformative multidisciplinary collaboration, we introduce the EULAR study group on MHC-I-opathies to unite clinical expertise in rheumatology, dermatology and ophthalmology, with fundamental and translational researchers from multiple disciplines such as immunology, genomics and proteomics, alongside patient partners. We prioritise standardisation of disease phenotypes and scientific nomenclature and propose interdisciplinary genetic and translational studies to exploit emerging therapeutic strategies to understand MHC-I-mediated disease mechanisms. These collaborative efforts are required to address outstanding questions in the etiopathogenesis of MHC-I-opathies towards improving patient treatment and prognostication.


Behcet Syndrome , Spondylarthritis , Uveitis , Humans , Genetic Predisposition to Disease , Behcet Syndrome/genetics , Histocompatibility Antigens Class I/genetics , Aminopeptidases/genetics , Minor Histocompatibility Antigens/genetics
4.
Clin Transl Immunology ; 11(6): e1400, 2022.
Article En | MEDLINE | ID: mdl-35782339

The complexity of the cellular and acellular players within the tumor microenvironment (TME) allows for significant variation in TME constitution and role in anticancer treatment response. Spatial alterations in populations of tumor cells and adjacent non-malignant cells, including endothelial cells, fibroblasts and tissue-infiltrating immune cells, often have a major role in determining disease progression and treatment response in cancer. Many current standard systemic antineoplastic treatments target the cancer cells and could be further refined to directly target commonly dysregulated cell populations of the TME. Recent developments in immuno-oncology and bioengineering have created an attractive potential to model these complexities at the level of the individual patient. These developments, along with the increasing momentum in precision medicine research and application, have catalysed exciting new discoveries in understanding drug-TME interactions, target identification, and improved efficacy of therapies. While rapid progress has been made, there are still many challenges to overcome in the development of accurate in vitro, in vivo and ex vivo models incorporating the cellular interactions that take place in the TME. In this review, we describe how advances in immuno-oncology and patient-derived models, such as patient-derived organoids and explant cultures, have enhanced the landscape of personalised immunotherapy prediction and treatment of solid organ malignancies. We describe and compare different immunological targets and perspectives on two-dimensional and three-dimensional modelling approaches that may be used to better rationalise immunotherapy use, ultimately providing a knowledge base for the integration of the autologous TME into these predictive models.

5.
Front Genet ; 13: 913196, 2022.
Article En | MEDLINE | ID: mdl-35754823

Systemic sclerosis (SSc) is an autoinflammatory, fibrotic condition of unknown aetiology. The presence of detectable autoantibodies against diverse nuclear antigens, as well as strong HLA associations with disease, suggest autoimmune involvement, however the links between endogenous and exogenous risk factors and SSc pathology remain undetermined. We have conducted a genetic analysis of HLA inheritance in two independent and meta-analysed cohorts of 1,465 SSc cases and 13,273 controls, including stratified association analyses in clinical and autoantibody positive subgroups of disease. Additionally, we have used patient genotypes to impute gene dosages across the KIR locus, encoding paired activating and inhibitory lymphocyte receptors for Class I HLA ligands, to conduct the largest analysis of KIR-HLA epistatic interactions in SSc to date. We confirm previous Class II HLA associations with SSc risk and report a new Class I association with haplotype HLA-B*44:03-HLA-C*16:01 at genome-wide significance (GWS). We further report statistically significant HLA associations with clinical and serological subtypes of disease through direct case-case comparison, and report a new association of HLA-DRB1*15:01, previously shown to bind topoisomerase-1 derived peptides, with anti-topoisomerase (ATA) positive disease. Finally, we identify genetic epistasis between KIRs and HLA class I ligands, suggesting genetic modulation of lymphocyte activation may further contribute to an individual's underlying disease risk. Taken together, these findings support future functional investigation into endogenous immunological and environmental stimuli for disrupted immune tolerance in SSc.

7.
Viruses ; 12(10)2020 10 07.
Article En | MEDLINE | ID: mdl-33036370

Dengue, chikungunya and Zika viruses share similar disease features, rendering them difficult to distinguish clinically. Incapacitating arthralgia/arthritis is a specific manifestation associated with chikungunya virus infection. However, the profile of arthralgia/arthritis in Zika virus (ZIKV) cases has not been well characterized. Articles were extracted from PubMed and Scopus databases reporting original data from patients with arthralgia/arthritis, according to the Cochrane Collaboration. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, 137 articles reporting ZIKV-associated joint symptoms were reviewed. Arthralgia was more frequently reported (n = 124 from case studies, n = 1779 from population-based studies) than arthritis (n = 7 and n = 121, respectively). Arthralgia was resolved in <1 week in 54%, and within 1-2 weeks in 40% of cases. The meta-analysis of cases in population-based studies identified a pooled prevalence of 53.55% for arthralgia. The pooled prevalence of arthralgia/arthritis during outbreaks depended on the geographic location, with a higher joint symptom burden observed in the Americas compared to South East Asia (Brazil: 60.79%; Puerto Rico: 68.89% and South East Asia: 26.46%). We conclude that non-specific constitutional arthralgia is the most common joint manifestation during ZIKV infection, being present in nearly half of cases but resolving by two weeks in >90% of these. We found no evidence of chronic rheumatic manifestations following ZIKV infection.


Arthralgia/epidemiology , Arthritis/epidemiology , Zika Virus Infection/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Arthralgia/virology , Arthritis/virology , Brazil/epidemiology , Disease Outbreaks , Female , Humans , Joints/pathology , Male , Middle Aged , Prevalence , Young Adult , Zika Virus , Zika Virus Infection/pathology
8.
PLoS Genet ; 16(8): e1008906, 2020 08.
Article En | MEDLINE | ID: mdl-32804949

The killer immunoglobulin-like receptors (KIRs), found predominantly on the surface of natural killer (NK) cells and some T-cells, are a collection of highly polymorphic activating and inhibitory receptors with variable specificity for class I human leukocyte antigen (HLA) ligands. Fifteen KIR genes are inherited in haplotypes of diverse gene content across the human population, and the repertoire of independently inherited KIR and HLA alleles is known to alter risk for immune-mediated and infectious disease by shifting the threshold of lymphocyte activation. We have conducted the largest disease-association study of KIR-HLA epistasis to date, enabled by the imputation of KIR gene and HLA allele dosages from genotype data for 12,214 healthy controls and 8,107 individuals with the HLA-B*27-associated immune-mediated arthritis, ankylosing spondylitis (AS). We identified epistatic interactions between KIR genes and their ligands (at both HLA subtype and allele resolution) that increase risk of disease, replicating analyses in a semi-independent cohort of 3,497 cases and 14,844 controls. We further confirmed that the strong AS-association with a pathogenic variant in the endoplasmic reticulum aminopeptidase gene ERAP1, known to alter the HLA-B*27 presented peptidome, is not modified by carriage of the canonical HLA-B receptor KIR3DL1/S1. Overall, our data suggests that AS risk is modified by the complement of KIRs and HLA ligands inherited, beyond the influence of HLA-B*27 alone, which collectively alter the proinflammatory capacity of KIR-expressing lymphocytes to contribute to disease immunopathogenesis.


Epistasis, Genetic , HLA Antigens/genetics , Receptors, KIR/genetics , Spondylitis, Ankylosing/genetics , Alleles , Aminopeptidases/genetics , Humans , Minor Histocompatibility Antigens/genetics , Polymorphism, Single Nucleotide
9.
Arthritis Rheumatol ; 72(8): 1289-1302, 2020 08.
Article En | MEDLINE | ID: mdl-32162785

OBJECTIVE: Ankylosing spondylitis (AS) is a common spondyloarthropathy primarily affecting the axial skeleton and strongly associated with HLA-B*27 carriage. Genetic evidence implicates both autoinflammatory processes and autoimmunity against an HLA-B*27-restricted autoantigen in immunopathology. In addition to articular symptoms, up to 70% of AS patients present with concurrent bowel inflammation, suggesting that adverse interactions between a genetically primed host immune system and the gut microbiome contribute to the disease. Accordingly, this study aimed to characterize adaptive immune responses to antigenic stimuli in AS. METHODS: The peripheral CD4 and CD8 T cell receptor (TCR) repertoire was profiled in AS patients (n = 47) and HLA-B*27-matched healthy controls (n = 38). Repertoire diversity was estimated using the Normalized Shannon Diversity Entropy (NSDE) index, and univariate and multivariate statistical analyses were performed to characterize AS-associated clonal signatures. Furthermore, T cell proliferation and cytokine production in response to immunogenic antigen exposure were investigated in vitro in peripheral blood mononuclear cells from AS patients (n = 19) and HLA-B*27-matched healthy controls (n = 14). RESULTS: Based on the NSDE measure of sample diversity across CD4 and CD8 T cell repertoires, AS patients showed increased TCR diversity compared to healthy controls (for CD4 T cells, P = 7.8 × 10-6 ; for CD8 T cells, P = 9.3 × 10-4 ), which was attributed to a significant reduction in the magnitude of peripheral T cell expansions globally. Upon in vitro stimulation, fewer T cells from AS patients than from healthy controls expressed interferon-γ (for CD8 T cells, P = 0.03) and tumor necrosis factor (for CD4 T cells, P = 0.01; for CD8 T cells, P = 0.002). In addition, the CD8 TCR signature was altered in HLA-B*27+ AS patients compared to healthy controls, with significantly expanded Epstein-Barr virus-specific clonotypes (P = 0.03) and cytomegalovirus-specific clonotypes (P = 0.02). HLA-B*27+ AS patients also showed an increased incidence of "public" CD8 TCRs, representing identical clonotypes emerging in response to common antigen encounters, including homologous clonotypes matching those previously isolated from individuals with bacterial-induced reactive arthritis. CONCLUSION: The dynamics of peripheral T cell responses in AS patients are altered, suggesting that differential antigen exposure and disrupted adaptive immunity are underlying features of the disease.


Adaptive Immunity/genetics , Antigenic Variation/genetics , Receptors, Antigen, T-Cell/immunology , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/immunology , Adult , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Case-Control Studies , Entropy , Female , HLA-B27 Antigen/genetics , HLA-B27 Antigen/immunology , Humans , Leukocytes, Mononuclear , Male
10.
Arthritis Res Ther ; 21(1): 133, 2019 06 03.
Article En | MEDLINE | ID: mdl-31159831

Advances in genomic technology have enabled a greater understanding of the genetics of common immune-mediated diseases such as ankylosing spondylitis (AS), inflammatory bowel disease (IBD) and psoriasis. The substantial overlap in genetically identified pathogenic pathways has been demonstrated between these diseases. However, to date, gene discovery approaches have only mapped a minority of the heritability of these common diseases, and most disease-associated variants have been found to be non-coding, suggesting mechanisms of disease-association through transcriptional regulatory effects.Epigenetics is a major interface between genetic and environmental modifiers of disease and strongly influence transcription. DNA methylation is a well-characterised epigenetic mechanism, and a highly stable epigenetic marker, that is implicated in disease pathogenesis. DNA methylation is an under-investigated area in immune-mediated diseases, and many studies in the field are affected by experimental design limitations, related to study design, technical limitations of the methylation typing methods employed, and statistical issues. This has resulted in both sparsity of investigations into disease-related changes in DNA methylation, a paucity of robust findings, and difficulties comparing studies in the same disease.In this review, we cover the basics of DNA methylation establishment and control, and the methods used to examine it. We examine the current state of DNA methylation studies in AS, IBD and psoriasis; the limitations of previous studies; and the best practices for DNA methylation studies. The purpose of this review is to assist with proper experimental design and consistency of approach in future studies to enable a better understanding of the functional role of DNA methylation in immune-mediated disease.


DNA Methylation , Epigenomics/methods , Inflammatory Bowel Diseases/genetics , Psoriasis/genetics , Spondylitis, Ankylosing/genetics , Genetic Predisposition to Disease/genetics , Humans
11.
PLoS Genet ; 15(4): e1008038, 2019 04.
Article En | MEDLINE | ID: mdl-30946743

Ankylosing spondylitis (AS) is a highly heritable immune-mediated arthritis common in Turkish and Iranian populations. Familial Mediterranean Fever (FMF) is an autosomal recessive autoinflammatory disease most common in people of Mediterranean origin. MEFV, an FMF-associated gene, is also a candidate gene for AS. We aimed to identify AS susceptibility loci and also examine the association between MEFV and AS in Turkish and Iranian cohorts. We performed genome-wide association studies in 1001 Turkish AS patients and 1011 Turkish controls, and 479 Iranian AS patients and 830 Iranian controls. Serum IL-1ß, IL-17 and IL-23 cytokine levels were quantified in Turkish samples. An association of major effect was observed with a novel rare coding variant in MEFV in the Turkish cohort (rs61752717, M694V, OR = 5.3, P = 7.63×10(-12)), Iranian cohort (OR = 2.9, P = 0.042), and combined dataset (OR = 5.1, P = 1.65×10(-13)). 99.6% of Turkish AS cases, and 96% of those carrying MEFV rs61752717 variants, did not have FMF. In Turkish subjects, the association of rs61752717 was particularly strong in HLA-B27-negative cases (OR = 7.8, P = 8.93×10(-15)), but also positive in HLA-B27-positive cases (OR = 4.3, P = 7.69×10(-8)). Serum IL-1ß, IL-17 and IL-23 levels were higher in AS cases than controls. Among AS cases, serum IL-1ß and IL-23 levels were increased in MEFV 694V carriers compared with non-carriers. Our data suggest that FMF and AS have overlapping aetiopathogenic mechanisms. Functionally important MEFV mutations, such as M694V, lead to dysregulated inflammasome function and excessive IL-1ß function. As IL-1 inhibition is effective in FMF, AS cases carrying FMF-associated MEFV variants may benefit from such therapy.


Familial Mediterranean Fever/genetics , Pyrin/genetics , Spondylitis, Ankylosing/genetics , Aged , Case-Control Studies , Cohort Studies , Familial Mediterranean Fever/immunology , Genetic Predisposition to Disease , Genome-Wide Association Study , HLA-B27 Antigen/genetics , HLA-B51 Antigen/genetics , Humans , Interleukin-1beta/blood , Interleukin-23/blood , Iran , Male , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Spondylitis, Ankylosing/immunology , Turkey
12.
Hum Immunol ; 80(5): 281-289, 2019 May.
Article En | MEDLINE | ID: mdl-30419264

The oxytocinase subfamily of M1 aminopeptidases plays an important role in processing and trimming of peptides for presentation on major histocompatibility (MHC) Class I molecules. Several large-scale genomic studies have identified association of members of this family of enzymes, most notably ERAP1 and ERAP2, with immune-mediated diseases including ankylosing spondylitis, psoriasis and birdshot chorioretinopathy. Much is now known about the genetics of these enzymes and how genetic variants alter their function, but how these variants contribute to disease remains largely unresolved. Here we discuss what is known about their structure and function and highlight some of the knowledge gaps that affect development of drugs targeting these enzymes.


Aminopeptidases/genetics , Aminopeptidases/metabolism , Immune System Diseases/etiology , Immune System Diseases/metabolism , Aminopeptidases/antagonists & inhibitors , Aminopeptidases/chemistry , Antigen Presentation , Autoimmunity , Biomarkers , Drug Development , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Genetic Predisposition to Disease , Humans , Immune System Diseases/diagnosis , Immune System Diseases/drug therapy , Inflammation/diagnosis , Inflammation/etiology , Inflammation/metabolism , Inflammation/therapy , Models, Molecular , Molecular Targeted Therapy , Multigene Family , Polymorphism, Single Nucleotide , Protein Conformation , Structure-Activity Relationship
13.
Arthritis Rheumatol ; 70(2): 255-265, 2018 02.
Article En | MEDLINE | ID: mdl-29108111

OBJECTIVE: Endoplasmic reticulum aminopeptidase 1 (ERAP-1) and ERAP-2, encoded on chromosome 5q15, trim endogenous peptides for HLA-mediated presentation to the immune system. Polymorphisms in ERAP1 and/or ERAP2 are strongly associated with several immune-mediated diseases with specific HLA backgrounds, implicating altered peptide handling and presentation as prerequisites for autoreactivity against an arthritogenic peptide. Given the thorough characterization of disease risk-associated polymorphisms that alter ERAP activity, this study aimed instead to interrogate the expression effect of chromosome 5q15 polymorphisms to determine their effect on ERAP isoform and protein expression. METHODS: RNA sequencing and genotyping across chromosome 5q15 were performed to detect genetic variants in ERAP1 and ERAP2 associated with altered total gene and isoform-specific expression. The functional implication of a putative messenger RNA splice-altering variant on ERAP-1 protein levels was validated using mass spectrometry. RESULTS: Polymorphisms associated with ankylosing spondylitis (AS) significantly influenced the transcript and protein expression of ERAP-1 and ERAP-2. Disease risk-associated polymorphisms in and around both genes were also associated with increased gene expression. Furthermore, key risk-associated ERAP1 variants were associated with altered transcript splicing, leading to allele-dependent alternate expression of 2 distinct isoforms and significant differences in the type of ERAP-1 protein produced. CONCLUSION: In accordance with studies demonstrating that polymorphisms that increase aminopeptidase activity predispose to immune disease, the increased risk also attributed to increased expression of ERAP1 and ERAP2 supports the notion of using aminopeptidase inhibition to treat AS and other ERAP-associated conditions.


Aminopeptidases/genetics , Immune System Diseases/genetics , Minor Histocompatibility Antigens/genetics , Spondylitis, Ankylosing/genetics , Adult , Aminopeptidases/metabolism , Chromosomes, Human, Pair 5/genetics , Female , Gene Expression , Genetic Predisposition to Disease , Genetic Variation , Genotype , Humans , Male , Mass Spectrometry/methods , Middle Aged , Minor Histocompatibility Antigens/metabolism , Polymorphism, Genetic , Sequence Analysis, RNA/methods , Young Adult
14.
Front Immunol ; 9: 3132, 2018.
Article En | MEDLINE | ID: mdl-30687330

Susceptibility to ankylosing spondylitis (AS) is polygenic with more than 100 genes identified to date. These include HLA-B27 and the aminopeptidases (ERAP1, ERAP2, and LNPEPS), which are involved in antigen processing and presentation to T-cells, and several genes (IL23R, IL6R, STAT3, JAK2, IL1R1/2, IL12B, and IL7R) involved in IL23 driven pathways of inflammation. AS is also strongly associated with polymorphisms in two transcription factors, RUNX3 and T-bet (encoded by TBX21), which are important in T-cell development and function. The influence of these genes on the pathogenesis of AS and their potential for identifying drug targets is discussed here.


Core Binding Factor Alpha 3 Subunit/genetics , Gene Expression Regulation/immunology , Interleukin-23/metabolism , Spondylitis, Ankylosing/immunology , T-Box Domain Proteins/genetics , Aminopeptidases/genetics , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Core Binding Factor Alpha 3 Subunit/antagonists & inhibitors , Core Binding Factor Alpha 3 Subunit/metabolism , Gene Expression Regulation/drug effects , HLA-B27 Antigen/genetics , Humans , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Interleukin-23/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Molecular Targeted Therapy/methods , Polymorphism, Single Nucleotide , Receptors, Interleukin/immunology , Receptors, Interleukin/metabolism , Spondylitis, Ankylosing/genetics , T-Box Domain Proteins/antagonists & inhibitors , T-Box Domain Proteins/metabolism
15.
Front Immunol ; 8: 971, 2017.
Article En | MEDLINE | ID: mdl-28878767

Dendritic cells (DC) initiate the differentiation of CD4+ helper T cells into effector cells including Th1 and Th17 responses that play an important role in inflammation and autoimmune disease pathogenesis. In mice, Th1 and Th17 responses are regulated by different conventional (c) DC subsets, with cDC1 being the main producers of IL-12p70 and inducers of Th1 responses, while cDC2 produce IL-23 to promote Th17 responses. The role that human DC subsets play in memory CD4+ T cell activation is not known. This study investigated production of Th1 promoting cytokine IL-12p70, and Th17 promoting cytokines, IL-1ß, IL-6, and IL-23, by human blood monocytes, CD1c+ DC, CD141+ DC, and plasmacytoid DC and examined their ability to induce Th1 and Th17 responses in memory CD4+ T cells. Human CD1c+ DC produced IL-12p70, IL-1ß, IL-6, and IL-23 in response to R848 combined with LPS or poly I:C. CD141+ DC were also capable of producing IL-12p70 and IL-23 but were not as proficient as CD1c+ DC. Activated CD1c+ DC were endowed with the capacity to promote both Th1 and Th17 effector function in memory CD4+ T cells, characterized by high production of interferon-γ, IL-17A, IL-17F, IL-21, and IL-22. These findings support a role for CD1c+ DC in autoimmune inflammation where Th1/Th17 responses play an important role in disease pathogenesis.

16.
BMC Musculoskelet Disord ; 18(1): 228, 2017 05 30.
Article En | MEDLINE | ID: mdl-28558827

BACKGROUND: Ankylosing spondylitis (AS) is characterised by immune-mediated arthritis and osteoproliferation, ultimately leading to joint ankylosis. Whether inflammation is necessary for osteoproliferation is controversial, fuelled by the unclear efficacy of anti-inflammatory treatments on radiographic progression. In proteoglycan-induced spondylitis (PGISp), a mouse model of AS, inflammation is the prerequisite for osteoproliferation as osteoproliferation was only observed following inflammation-driven intervertebral disc (IVD) destruction. We hypothesised that early intervention with a potent anti-inflammatory therapy would protect IVD integrity and consequently alter disease progression. METHODS: PGISp mice received vehicle or a combination of etanercept (ETN) plus prednisolone (PRD) therapy for 2 or 6 weeks initiated at an early disease stage. Peripheral arthritis was scored longitudinally. Spinal disease was assessed using a semi-quantitative histological scoring regimen including inflammation, joint destruction and excessive tissue formation. RESULTS: ETN + PRD therapy significantly delayed the onset of peripheral arthritis. IVD integrity was significantly protected when treatment was commenced in early disease. Six-weeks of treatment resulted in trends towards reductions in intervertebral joint damage and excessive tissue formation. IVD score distribution was dichotomized, likely reflecting the extent of axial disease at initiation of therapy. In the sub-group of mice with high IVD destruction scores, ETN + PRD treatment significantly reduced IVD destruction severity, inflammation and bone erosion and reduced cartilage damage and excessive tissue formation. CONCLUSIONS: Early intervention with anti-inflammatory treatment not only improved inflammatory symptoms but also ameliorated structural damage of spine in PGISp mice. This preclinical observation suggests that early anti-inflammatory intervention may slow radiographic progression in AS patients.


Anti-Inflammatory Agents/administration & dosage , Disease Models, Animal , Proteoglycans/toxicity , Spondylitis, Ankylosing/chemically induced , Spondylitis, Ankylosing/drug therapy , Animals , Drug Administration Schedule , Drug Therapy, Combination , Etanercept/administration & dosage , Female , Humans , Mice , Mice, Inbred BALB C , Prednisolone/administration & dosage , Spondylitis, Ankylosing/pathology
17.
Ann Rheum Dis ; 76(1): 261-269, 2017 Jan.
Article En | MEDLINE | ID: mdl-27125523

OBJECTIVES: Ankylosing spondylitis (AS) is a highly heritable immune-mediated arthropathy. Inflammation in AS is poorly understood. TBX21 encodes T-bet, a transcription factor, lying within a locus with genome-wide significant association with AS. T-bet is implicated in innate and adaptive immunity. However, the role of T-bet in AS pathogenesis is unclear. METHODS: We assessed the importance of T-bet in disease development and progression in peripheral blood mononuclear cells from 172 AS cases and 83 healthy controls carrying either risk or protective alleles of the peak AS-associated TBX21 single nucleotide polymorphism. Kinetics and localisation of T-bet expression in the SKG mouse model of spondyloarthropathy was examined, along with the impact of Tbx21 knockout on arthritis development in SKG mice. RESULTS: Patients with AS had higher T-bet expression than healthy individuals, driven predominantly by natural killer and CD8+ T cells, with expression levels in CD8+ T cells completely distinguishing AS cases from healthy controls. T-bet expression was increased in AS cases carrying risk compared with protective alleles of rs11657479. In curdlan-treated SKG mice, T-bet expression increased early after disease initiation and persisted throughout the course of disease. There was marked reduction in gut and peripheral joint inflammation, and less IFNγ-producing and IL-17-producing CD8+ T cells, in Tbx21-/- compared with wild-type SKG mice. CONCLUSIONS: AS-associated variants in TBX21 influence T-bet expression. T-bet+ innate and adaptive immune cells have altered IL-17 and IFNγ, and early activation marker CD69 expression than T-bet cells. This indicates that T-bet is a major component of inflammatory pathways of spondyloarthropathy in humans and mice.


Arthritis, Experimental/genetics , Cytokines/biosynthesis , Spondylitis, Ankylosing/genetics , T-Box Domain Proteins/genetics , Adult , Aged , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , CD8-Positive T-Lymphocytes/immunology , Case-Control Studies , Female , Gene Expression Regulation/physiology , Genetic Predisposition to Disease , Genotype , Humans , Inflammation Mediators/metabolism , Killer Cells, Natural/immunology , Lymph Nodes/immunology , Male , Mice, Inbred BALB C , Mice, Knockout , Middle Aged , Polymorphism, Single Nucleotide , Spondylitis, Ankylosing/immunology , Spondylitis, Ankylosing/pathology , T-Box Domain Proteins/biosynthesis , Young Adult
18.
Curr Rheumatol Rep ; 18(10): 63, 2016 10.
Article En | MEDLINE | ID: mdl-27641916

Ankylosing spondylitis (AS) is a highly heritable disease for which there is a great unmet need for improved therapies. Genetics research has identified several major pathways involved in the disease, from which treatments have either now entered clinical practice or are in development. In particular, therapies targeting the IL-23 pathway were repositioned for use in AS following the discovery of multiple genes in the pathway as determinants of AS risk. Discovery of the association of aminopeptidase genes with AS, and subsequently with psoriasis, inflammatory bowel disease and other conditions, has triggered research into therapies targeting this pathway. The AS-genetic associations point to involvement of gut mucosal immunity in driving disease, and metagenomic studies have provided strong support that AS is a disease driven by interaction between the gut microbiome and host immune system, providing a rationale for the exploration of gut-targeted therapies for the disease.


Alleles , Genetic Loci , Genetic Predisposition to Disease , Spondylitis, Ankylosing/genetics , Genomics , Humans
19.
J Med Genet ; 53(7): 457-64, 2016 07.
Article En | MEDLINE | ID: mdl-27068007

BACKGROUND: Acromelic dysplasias are a group of disorders characterised by short stature, brachydactyly, limited joint extension and thickened skin and comprises acromicric dysplasia (AD), geleophysic dysplasia (GD), Myhre syndrome and Weill-Marchesani syndrome. Mutations in several genes have been identified for these disorders (including latent transforming growth factor ß (TGF-ß)-binding protein-2 (LTBP2), ADAMTS10, ADAMSTS17 and fibrillin-1 (FBN1) for Weill-Marchesani syndrome, ADAMTSL2 for recessive GD and FBN1 for AD and dominant GD), encoding proteins involved in the microfibrillar network. However, not all cases have mutations in these genes. METHODS: Individuals negative for mutations in known acromelic dysplasia genes underwent whole exome sequencing. RESULTS: A heterozygous missense mutation (exon 14: c.2087C>G: p.Ser696Cys) in latent transforming growth factor ß (TGF-ß)-binding protein-3 (LTBP3) was identified in a dominant AD family. Two distinct de novo heterozygous LTPB3 mutations were also identified in two unrelated GD individuals who had died in early childhood from respiratory failure-a donor splice site mutation (exon 12 c.1846+5G>A) and a stop-loss mutation (exon 28: c.3912A>T: p.1304*Cysext*12). CONCLUSIONS: The constellation of features in these AD and GD cases, including postnatal growth retardation of long bones and lung involvement, is reminiscent of the null ltbp3 mice phenotype. We conclude that LTBP3 is a novel component of the microfibrillar network involved in the acromelic dysplasia spectrum.


Bone Diseases, Developmental/genetics , Latent TGF-beta Binding Proteins/genetics , Limb Deformities, Congenital/genetics , Mutation, Missense/genetics , Exome/genetics , Exons/genetics , Fibrillin-1/genetics , Heterozygote , Humans , Microfilament Proteins/genetics , Mutation , Phenotype , Transforming Growth Factor beta/genetics , Weill-Marchesani Syndrome/genetics
20.
Arthritis Res Ther ; 18: 35, 2016 Jan 29.
Article En | MEDLINE | ID: mdl-26831337

BACKGROUND: Ankylosing spondylitis (AS) is an immune-mediated arthritis particularly targeting the spine and pelvis and is characterised by inflammation, osteoproliferation and frequently ankylosis. Current treatments that predominately target inflammatory pathways have disappointing efficacy in slowing disease progression. Thus, a better understanding of the causal association and pathological progression from inflammation to bone formation, particularly whether inflammation directly initiates osteoproliferation, is required. METHODS: The proteoglycan-induced spondylitis (PGISp) mouse model of AS was used to histopathologically map the progressive axial disease events, assess molecular changes during disease progression and define disease progression using unbiased clustering of semi-quantitative histology. PGISp mice were followed over a 24-week time course. Spinal disease was assessed using a novel semi-quantitative histological scoring system that independently evaluated the breadth of pathological features associated with PGISp axial disease, including inflammation, joint destruction and excessive tissue formation (osteoproliferation). Matrix components were identified using immunohistochemistry. RESULTS: Disease initiated with inflammation at the periphery of the intervertebral disc (IVD) adjacent to the longitudinal ligament, reminiscent of enthesitis, and was associated with upregulated tumor necrosis factor and metalloproteinases. After a lag phase, established inflammation was temporospatially associated with destruction of IVDs, cartilage and bone. At later time points, advanced disease was characterised by substantially reduced inflammation, excessive tissue formation and ectopic chondrocyte expansion. These distinct features differentiated affected mice into early, intermediate and advanced disease stages. Excessive tissue formation was observed in vertebral joints only if the IVD was destroyed as a consequence of the early inflammation. Ectopic excessive tissue was predominantly chondroidal with chondrocyte-like cells embedded within collagen type II- and X-rich matrix. This corresponded with upregulation of mRNA for cartilage markers Col2a1, sox9 and Comp. Osteophytes, though infrequent, were more prevalent in later disease. CONCLUSIONS: The inflammation-driven IVD destruction was shown to be a prerequisite for axial disease progression to osteoproliferation in the PGISp mouse. Osteoproliferation led to vertebral body deformity and fusion but was never seen concurrent with persistent inflammation, suggesting a sequential process. The findings support that early intervention with anti-inflammatory therapies will be needed to limit destructive processes and consequently prevent progression of AS.


Disease Models, Animal , Disease Progression , Osteogenesis/physiology , Spondylitis, Ankylosing/etiology , Spondylitis, Ankylosing/pathology , Animals , Female , Inflammation/complications , Inflammation/pathology , Mice , Mice, Inbred BALB C , Mice, Knockout
...