Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Nat Commun ; 12(1): 6442, 2021 11 08.
Article En | MEDLINE | ID: mdl-34750360

The genetic architecture of atrial fibrillation (AF) encompasses low impact, common genetic variants and high impact, rare variants. Here, we characterize a high impact AF-susceptibility allele, KCNQ1 R231H, and describe its transcontinental geographic distribution and history. Induced pluripotent stem cell-derived cardiomyocytes procured from risk allele carriers exhibit abbreviated action potential duration, consistent with a gain-of-function effect. Using identity-by-descent (IBD) networks, we estimate the broad- and fine-scale population ancestry of risk allele carriers and their relatives. Analysis of ancestral migration routes reveals ancestors who inhabited Denmark in the 1700s, migrated to the Northeastern United States in the early 1800s, and traveled across the Midwest to arrive in Utah in the late 1800s. IBD/coalescent-based allele dating analysis reveals a relatively recent origin of the AF risk allele (~5000 years). Thus, our approach broadens the scope of study for disease susceptibility alleles to the context of human migration and ancestral origins.


Atrial Fibrillation/genetics , Genetic Predisposition to Disease/genetics , KCNQ1 Potassium Channel/genetics , Mutation, Missense , Polymorphism, Single Nucleotide , Action Potentials , Alleles , Denmark , Emigrants and Immigrants , Female , Genotype , Geography , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Male , Middle Aged , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Pedigree , Risk Factors , Utah
2.
PLoS Comput Biol ; 11(12): e1004572, 2015 Dec.
Article En | MEDLINE | ID: mdl-26625158

Existing methods for identifying structural variants (SVs) from short read datasets are inaccurate. This complicates disease-gene identification and efforts to understand the consequences of genetic variation. In response, we have created Wham (Whole-genome Alignment Metrics) to provide a single, integrated framework for both structural variant calling and association testing, thereby bypassing many of the difficulties that currently frustrate attempts to employ SVs in association testing. Here we describe Wham, benchmark it against three other widely used SV identification tools-Lumpy, Delly and SoftSearch-and demonstrate Wham's ability to identify and associate SVs with phenotypes using data from humans, domestic pigeons, and vaccinia virus. Wham and all associated software are covered under the MIT License and can be freely downloaded from github (https://github.com/zeeev/wham), with documentation on a wiki (http://zeeev.github.io/wham/). For community support please post questions to https://www.biostars.org/.


Algorithms , Chromosome Mapping/methods , Genetic Association Studies/methods , Genetic Variation/genetics , Genome, Human/genetics , Genomic Structural Variation/genetics , Base Sequence , Humans , Molecular Sequence Data , Software
3.
Am J Med Genet A ; 167A(12): 2975-84, 2015 Dec.
Article En | MEDLINE | ID: mdl-26284702

Wolff-Parkinson-White (WPW) syndrome is a common cause of supraventricular tachycardia that carries a risk of sudden cardiac death. To date, mutations in only one gene, PRKAG2, which encodes the 5'-AMP-activated protein kinase subunit γ-2, have been identified as causative for WPW. DNA samples from five members of a family with WPW were analyzed by exome sequencing. We applied recently designed prioritization strategies (VAAST/pedigree VAAST) coupled with an ontology-based algorithm (Phevor) that reduced the number of potentially damaging variants to 10: a variant in KCNE2 previously associated with Long QT syndrome was also identified. Of these 11 variants, only MYH6 p.E1885K segregated with the WPW phenotype in all affected individuals and was absent in 10 unaffected family members. This variant was predicted to be damaging by in silico methods and is not present in the 1,000 genome and NHLBI exome sequencing project databases. Screening of a replication cohort of 47 unrelated WPW patients did not identify other likely causative variants in PRKAG2 or MYH6. MYH6 variants have been identified in patients with atrial septal defects, cardiomyopathies, and sick sinus syndrome. Our data highlight the pleiotropic nature of phenotypes associated with defects in this gene.


Exome , Wolff-Parkinson-White Syndrome/genetics , AMP-Activated Protein Kinases/genetics , Adult , Cardiac Myosins/genetics , Female , Genetic Loci , Humans , Male , Myosin Heavy Chains/genetics , Pedigree , Potassium Channels, Voltage-Gated/genetics , Wolff-Parkinson-White Syndrome/etiology
4.
PLoS One ; 10(6): e0131514, 2015.
Article En | MEDLINE | ID: mdl-26121141

Most isolated congenital heart defects are thought to be sporadic and are often ascribed to multifactorial mechanisms with poorly understood genetics. Total Anomalous Pulmonary Venous Return (TAPVR) occurs in 1 in 15,000 live-born infants and occurs either in isolation or as part of a syndrome involving aberrant left-right development. Previously, we reported causative links between TAVPR and the PDGFRA gene. TAPVR has also been linked to the ANKRD1/CARP genes. However, these genes only explain a small fraction of the heritability of the condition. By examination of phased single nucleotide polymorphism genotype data from 5 distantly related TAPVR patients we identified a single 25 cM shared, Identical by Descent genomic segment on the short arm of chromosome 12 shared by 3 of the patients and their obligate-carrier parents. Whole genome sequence (WGS) analysis identified a non-synonymous variant within the shared segment in the retinol binding protein 5 (RBP5) gene. The RBP5 variant is predicted to be deleterious and is overrepresented in the TAPVR population. Gene expression and functional analysis of the zebrafish orthologue, rbp7, supports the notion that RBP5 is a TAPVR susceptibility gene. Additional sequence analysis also uncovered deleterious variants in genes associated with retinoic acid signaling, including NODAL and retinol dehydrogenase 10. These data indicate that genetic variation in the retinoic acid signaling pathway confers, in part, susceptibility to TAPVR.


High-Throughput Nucleotide Sequencing/methods , Scimitar Syndrome/genetics , Signal Transduction , Tretinoin/metabolism , Animals , Chromosomes, Human, Pair 12/genetics , Female , Gene Expression Regulation, Developmental , Gene Frequency/genetics , Gene Knockdown Techniques , Genetic Variation , Heart/embryology , Heart/physiology , Humans , Male , Morpholinos/pharmacology , Pedigree , Software , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
...