Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biol Chem ; 300(1): 105555, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072062

RESUMEN

Discovery and optimization of a biotherapeutic monoclonal antibody requires a careful balance of target engagement and physicochemical developability properties. To take full advantage of the sequence diversity provided by different antibody discovery platforms, a rapid and reliable process for humanization of antibodies from nonhuman sources is required. Canonically, maximizing homology of the human variable region (V-region) to the original germline was believed to result in preservation of binding, often without much consideration for inherent molecular properties. We expand on this approach by grafting the complementary determining regions (CDRs) of a mouse anti-LAG3 antibody into an extensive matrix of human variable heavy chain (VH) and variable light chain (VL) framework regions with substantially broader sequence homology to assess the impact on complementary determining region-framework compatibility through progressive evaluation of expression, affinity, biophysical developability, and function. Specific VH and VL framework sequences were associated with major expression and purification phenotypes. Greater VL sequence conservation was correlated with retained or improved affinity. Analysis of grafts that bound the target demonstrated that initial developability criteria were significantly impacted by VH, but not VL. In contrast, cell binding and functional characteristics were significantly impacted by VL, but not VH. Principal component analysis of all factors identified multiple grafts that exhibited more favorable antibody properties, notably with nonoptimal sequence conservation. Overall, this study demonstrates that modern throughput systems enable a more thorough, customizable, and systematic analysis of graft-framework combinations, resulting in humanized antibodies with improved global properties that may progress through development more quickly and with a greater probability of success.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Anticuerpos Monoclonales , Animales , Humanos , Ratones , Anticuerpos Monoclonales Humanizados/química , Afinidad de Anticuerpos , Regiones Determinantes de Complementariedad/química
2.
NPJ Parkinsons Dis ; 9(1): 91, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322068

RESUMEN

Prion-like transmission of pathology in α-synucleinopathies like Parkinson's disease or multiple system atrophy is increasingly recognized as one potential mechanism to address disease progression. Active and passive immunotherapies targeting insoluble, aggregated α-synuclein are already being actively explored in the clinic with mixed outcomes so far. Here, we report the identification of 306C7B3, a highly selective, aggregate-specific α-synuclein antibody with picomolar affinity devoid of binding to the monomeric, physiologic protein. 306C7B3 binding is Ser129-phosphorylation independent and shows high affinity to several different aggregated α-synuclein polymorphs, increasing the likelihood that it can also bind to the pathological seeds assumed to drive disease progression in patients. In support of this, highly selective binding to pathological aggregates in postmortem brains of MSA patients was demonstrated, with no staining in samples from other human neurodegenerative diseases. To achieve CNS exposure of 306C7B3, an adeno-associated virus (AAV) based approach driving expression of the secreted antibody within the brain of (Thy-1)-[A30P]-hα-synuclein mice was used. Widespread central transduction after intrastriatal inoculation was ensured by using the AAV2HBKO serotype, with transduction being spread to areas far away from the inoculation site. Treatment of (Thy-1)-[A30P]-hα-synuclein mice at the age of 12 months demonstrated significantly increased survival, with 306C7B3 concentration reaching 3.9 nM in the cerebrospinal fluid. These results suggest that AAV-mediated expression of 306C7B3, targeting extracellular, presumably disease-propagating aggregates of α-synuclein, has great potential as a disease-modifying therapy for α-synucleinopathies as it ensures CNS exposure of the antibody, thereby mitigating the selective permeability of the blood-brain barrier.

3.
MAbs ; 14(1): 2104153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35916739

RESUMEN

An in-house antibody generation campaign identified a diverse, high affinity set of anti-interleukin-11 (IL-11) monoclonal antibodies (mAbs) to enable successful development of novel, custom ultra-sensitive target engagement assays for detection of "free" (unbound to the dosed anti-IL-11 therapeutic mAb) and "total" (free and mAb-IL-11 complexed form) IL-11 in preclinical species and human. Antibody hits from distinct epitope communities were screened on various platforms, including enzyme-linked immunosorbent assay, Meso Scale Discovery, Simoa HD-1 and Simoa Planar Array (SP-X), and used for assay development and sensitivity optimization. The ultra-sensitive SP-X format achieved a lower limit of quantitation of 0.006 pg/mL, enabling the first reported baseline levels of IL-11 in healthy control plasma determined by custom bioanalytical assays. These newly established baseline levels supported mechanistic pharmacokinetic/pharmacodynamic modeling in mouse, cynomolgus monkey, and human for a greater understanding of preclinical study design and in vivo dynamic interaction of soluble IL-11 with an anti-IL-11 antibody therapeutic candidate. Modeling and simulation also helped refine the utility of assays with respect to their potential use as target engagement biomarkers in the clinic.Abbreviations IL-11: Interleukin-11, TE: Target engagement, PK/PD: Pharmacokinetic/pharmacodynamic, mAb: Monoclonal antibody, NHP: Non-human primate, IgG: Immunoglobulin G, Cyno: Cynomolgulus monkey, GFR: Glomerular filtration rate, BQL: Below quantitation levels, DRM: Disease relevant model, kDa: kilodaltons, SPR: Surface plasmon resonance, pSTAT3: phosphorylated STAT3, IL-11R: Interleukin-11 receptor, TPP: Target product protein, LLOQ: Lower limit of quantitation, RLU: Relative light units.


Asunto(s)
Anticuerpos Monoclonales , Inmunoglobulina G , Animales , Simulación por Computador , Ensayo de Inmunoadsorción Enzimática , Macaca fascicularis , Ratones
4.
Oncoimmunology ; 11(1): 2080328, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756842

RESUMEN

Upregulation of inhibitory receptors, such as lymphocyte activation gene-3 (LAG-3), may limit the antitumor activity of therapeutic antibodies targeting the programmed cell death protein-1 (PD-1) pathway. We describe the binding properties of ezabenlimab, an anti-human PD-1 antibody, and BI 754111, an anti-human LAG-3 antibody, and assess their activity alone and in combination. Ezabenlimab bound with high affinity to human PD-1 (KD = 6 nM) and blocked the interaction of PD-1 with PD-L1 and PD-L2. Ezabenlimab dose-dependently increased interferon-γ secretion in human T cells expressing PD-1 in co-culture with PD-L1-expressing dendritic cells. Administration of ezabenlimab to human PD-1 knock-in mice dose-dependently inhibited growth of MC38 tumors. To reduce immunogenicity, ezabenlimab was reformatted from a human IgG4 to a chimeric variant with a mouse IgG1 backbone (BI 905725) for further in vivo studies. Combining BI 905725 with anti-mouse LAG-3 antibodies improved antitumor activity versus BI 905725 monotherapy in the MC38 tumor model. We generated BI 754111, which bound with high affinity to human LAG-3 and prevented LAG-3 interaction with its ligand, major histocompatibility complex class II. In an in vitro model of antigen-experienced memory T cells expressing PD-1 and LAG-3, interferon-γ secretion increased by an average 1.8-fold versus isotype control (p = 0.027) with BI 754111 monotherapy, 6.9-fold (p < 0.0001) with ezabenlimab monotherapy and 13.2-fold (p < 0.0001) with BI 754111 plus ezabenlimab. Overall, ezabenlimab and BI 754111 bound to their respective targets with high affinity and prevented ligand binding. Combining ezabenlimab with BI 754111 enhanced in vitro activity versus monotherapy, supporting clinical investigation of this combination (NCT03156114; NCT03433898).


Asunto(s)
Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Animales , Anticuerpos Bloqueadores , Anticuerpos Monoclonales/farmacología , Estudios Clínicos como Asunto , Inhibidores de Puntos de Control Inmunológico , Interferón gamma , Ligandos , Ratones
5.
Transl Vis Sci Technol ; 11(6): 17, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35727188

RESUMEN

Purpose: Semaphorin 3A (Sema3A) is an axonal guidance molecule that inhibits angiogenesis by vasorepulsion and blocks revascularization in the ischemic retina. BI-X is an intravitreal anti-Sema3A agent under clinical investigation in patients with proliferative diabetic retinopathy (PDR) and diabetic macular ischemia (DMI). Methods: Surface plasmon resonance was used to determine binding affinity of BI-X to human and murine Sema3A. In vitro, human retinal microvascular endothelial cells (HRMECs) were used to assess effects of BI-X on cell permeability and cytoskeletal collapse induced by Sema3A. In vivo, intravitreal BI-X or an anti-trinitrophenol control antibody was administered in both eyes in mice with oxygen-induced retinopathy (OIR). Retinal flat mounts were prepared, and avascular area and tip cell density were determined using confocal laser-scanning microscopy. Results: Dissociation constants for BI-X binding to human and murine Sema3A were 29 pM and 27 pM, respectively. In vitro, BI-X prevented HRMEC permeability and cytoskeletal collapse induced by Sema3A. In vivo, BI-X increased tip cell density by 33% (P < 0.001) and reduced avascular area by 12% (not significant). A significant negative correlation was evident between avascular area and tip cell density (r2 = 0.4205, P < 0.0001). Conclusions: BI-X binds to human Sema3A with picomolar affinity and prevents cell permeability and cytoskeletal collapse in HRMECs. BI-X also enhances revascularization in mice with OIR. Translational Relevance: BI-X is a potent inhibitor of human Sema3A that improves revascularization in a murine model of OIR; BI-X is currently being investigated in patients with laser-treated PDR and DMI.


Asunto(s)
Citoesqueleto , Retinopatía Diabética , Enfermedades de la Retina , Animales , Recuento de Células , Permeabilidad de la Membrana Celular , Retinopatía Diabética/tratamiento farmacológico , Células Endoteliales/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Oxígeno/metabolismo , Oxígeno/toxicidad , Permeabilidad , Retina , Semaforina-3A/metabolismo , Semaforina-3A/farmacología
6.
Bioanalysis ; 10(6): 397-406, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29451404

RESUMEN

AIM: The fully automated microfluidics-based Gyrolab is a popular instrument for the bioanalysis of protein therapeutics; requiring minimal sample and reagent volumes. Gyros offers affinity software for determining binding affinity in solution using a high-throughput method and miniaturized reactions. RESULTS: Using this affinity software, multiple CTGF-targeting reagents were characterized on the Gyrolab after <100% target coverage was seen in a cynomolgus pharmacokinetic/PD study dosed with anti-CTGF antibodies. The results uncovered magnitude differences in binding affinities between the dosed antibody, target and assay reagents. CONCLUSION: The binding affinity values were used to investigate reduced target coverage and results highlight potential of the affinity software for incorporation into the bioanalyst's existing Gyrolab workflow for characterizing reagents and optimizing pharmacokinetic/PD bioanalytical assays.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Bioensayo/métodos , Inmunoensayo/métodos , Humanos , Flujo de Trabajo
7.
MAbs ; 9(7): 1105-1117, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28786732

RESUMEN

Antibodies with pH-dependent binding to both target antigens and neonatal Fc receptor (FcRn) provide an alternative tool to conventional neutralizing antibodies, particularly for therapies where reduction in antigen level is challenging due to high target burden. However, the requirements for optimal binding kinetic framework and extent of pH dependence for these antibodies to maximize target clearance from circulation are not well understood. We have identified a series of naturally-occurring high affinity antibodies with pH-dependent target binding properties. By in vivo studies in cynomolgus monkeys, we show that pH-dependent binding to the target alone is not sufficient for effective target removal from circulation, but requires Fc mutations that increase antibody binding to FcRn. Affinity-enhanced pH-dependent FcRn binding that is double-digit nM at pH 7.4 and single-digit nM at pH 6 achieved maximal target reduction when combined with similar target binding affinities in reverse pH directions. Sustained target clearance below the baseline level was achieved 3 weeks after single-dose administration at 1.5 mg/kg. Using the experimentally derived mechanistic model, we demonstrate the essential kinetic interplay between target turnover and antibody pH-dependent binding during the FcRn recycling, and identify the key components for achieving maximal target clearance. These results bridge the demand for improved patient dosing convenience with the "know-how" of therapeutic modality by design.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Anticuerpos Neutralizantes/farmacología , Antígenos de Histocompatibilidad Clase I/inmunología , Receptores Fc/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Afinidad de Anticuerpos/inmunología , Humanos , Concentración de Iones de Hidrógeno , Macaca fascicularis
8.
J Pharmacol Exp Ther ; 359(1): 37-44, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27440419

RESUMEN

Therapeutic agents antagonizing B-cell-activating factor/B-lymphocyte stimulator (BAFF/BLyS) are currently in clinical development for autoimmune diseases; belimumab is the first Food and Drug Administration-approved drug in more than 50 years for the treatment of lupus. As a member of the tumor necrosis factor superfamily, BAFF promotes B-cell survival and homeostasis and is overexpressed in patients with systemic lupus erythematosus and other autoimmune diseases. BAFF exists in three recognized forms: membrane-bound and two secreted, soluble forms of either trimeric or 60-mer oligomeric states. To date, most in vitro pharmacology studies of BAFF neglect one or more of these forms. Here, we report a comprehensive in vitro cell-based analysis of BAFF in assay systems that measure all forms of BAFF-mediated activation. We demonstrate the effects of these BAFF forms in both a primary human B-cell proliferation assay and in nuclear factor κB reporter assay systems in Chinese hamster ovary cells expressing BAFF receptors and transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI). In contrast to the mouse system, we find that BAFF trimer activates the human TACI receptor. Further, we profiled the activities of two clinically advanced BAFF antagonist antibodies, belimumab and tabalumab. Unexpectedly, we revealed differences in inhibitory potencies against the various BAFF forms, in particular that belimumab does not potently inhibit BAFF 60-mer. Through this increased understanding of the activity of BAFF antagonists against different forms of BAFF, we hope to influence the discovery of BAFF antagonist antibodies with distinct therapeutic mechanisms for improvement in the treatment of lupus or other related autoimmune pathologies.


Asunto(s)
Anticuerpos Monoclonales Humanizados/inmunología , Factor Activador de Células B/química , Factor Activador de Células B/metabolismo , Membrana Celular/metabolismo , Multimerización de Proteína , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Factor Activador de Células B/inmunología , Linfocitos B/citología , Linfocitos B/efectos de los fármacos , Células CHO , Proliferación Celular/efectos de los fármacos , Cricetinae , Cricetulus , Humanos , Ratones , FN-kappa B/metabolismo , Estructura Cuaternaria de Proteína , Solubilidad
9.
Bioorg Med Chem Lett ; 19(1): 62-6, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19041240

RESUMEN

Insulin-like growth factor receptor (IGF-1R) is a growth factor receptor tyrosine kinase that acts as a critical mediator of cell proliferation and survival. Inhibitors of this receptor are believed to provide a new target in cancer therapy. We previously reported an isoquinolinedione series of IGF-1R inhibitors. Now we have identified a series of 3-cyanoquinoline compounds that are low nanomolar inhibitors of IGF-1R. The strategies, synthesis, and SAR behind the cyanoquinoline scaffold will be discussed.


Asunto(s)
Antineoplásicos/síntesis química , Nitrilos/síntesis química , Quinolinas/síntesis química , Receptor IGF Tipo 1/antagonistas & inhibidores , Humanos , Nitrilos/farmacología , Quinolinas/farmacología , Relación Estructura-Actividad
10.
Bioorg Med Chem Lett ; 18(12): 3641-5, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18501599

RESUMEN

Insulin-like growth factor receptor (IGF-1R) is a growth factor receptor tyrosine kinase that acts as a critical mediator of cell proliferation and survival. This receptor is over-expressed or activated in tumor cells and is emerging as a novel target in cancer therapy. Efforts in our "Hit to Lead" group have generated a novel series of submicromolar IGF-1R inhibitors based on a isoquinolinedione template originating from a Lance enzyme HTS screen. Chemical triage and parallel synthesis incorporating focused library arrays were instrumental in moving these investigations through the Wyeth exploratory medicinal chemistry process. The strategies, synthesis, and SAR behind this interesting kinase scaffold will be described.


Asunto(s)
Antineoplásicos/farmacología , Isoquinolinas/farmacología , Receptor IGF Tipo 1/antagonistas & inhibidores , Antineoplásicos/química , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Isoquinolinas/química , Modelos Moleculares , Estructura Molecular , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
11.
Bioorg Med Chem ; 14(23): 7953-61, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16919463

RESUMEN

ZipA is a membrane anchored protein in Escherichia coli that interacts with FtsZ, a homolog of eukaryotic tubulins, forming a septal ring structure that mediates bacterial cell division. Thus, the ZipA/FtsZ protein-protein interaction is a potential target for an antibacterial agent. We report here an NMR-based fragment screening approach which identified several hits that bind to the C-terminal region of ZipA. The screen was performed by 1H-15N HSQC experiments on a library of 825 fragments that are small, lead-like, and highly soluble. Seven hits were identified, and the binding mode of the best one was revealed in the X-ray crystal structure. Similar to the ZipA/FtsZ contacts, the driving force in the binding of the small molecule ligands to ZipA is achieved through hydrophobic interactions. Analogs of this hit were also evaluated by NMR and X-ray crystal structures of these analogs with ZipA were obtained, providing structural information to help guide the medicinal chemistry efforts.


Asunto(s)
Antibacterianos/síntesis química , Proteínas Portadoras/antagonistas & inhibidores , Proteínas de Ciclo Celular/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos/métodos , Proteínas de Escherichia coli/antagonistas & inhibidores , Espectroscopía de Resonancia Magnética , Complejos Multiproteicos/antagonistas & inhibidores , Antibacterianos/farmacología , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Diseño de Fármacos , Proteínas de Escherichia coli/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Fragmentos de Péptidos/metabolismo , Unión Proteica , Relación Estructura-Actividad
12.
Bioorg Med Chem ; 12(19): 5115-31, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15351395

RESUMEN

The ZipA-FtsZ protein-protein interaction is a potential target for antibacterial therapy. The design and parallel synthesis of a combinatorial library of small molecules, which target the FtsZ binding area on ZipA are described. Compounds were demonstrated to bind to the FtsZ binding domain of ZipA by HSQC NMR and to inhibit cell division in a cell elongation assay.


Asunto(s)
Antibacterianos/síntesis química , Proteínas Portadoras/química , Proteínas de Ciclo Celular/química , Proteínas de Escherichia coli/química , Indoles/síntesis química , Piperidinas/síntesis química , Antibacterianos/farmacología , División Celular/efectos de los fármacos , Técnicas Químicas Combinatorias , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Indoles/farmacología , Concentración 50 Inhibidora , Piperidinas/farmacología , Unión Proteica/efectos de los fármacos , Relación Estructura-Actividad
13.
Bioorg Med Chem Lett ; 14(6): 1427-31, 2004 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-15006376

RESUMEN

The binding of FtsZ to ZipA is a potential target for antibacterial therapy. Based on a small molecule inhibitor of the ZipA-FtsZ interaction, a parallel synthesis of small molecules was initiated which targeted a key region of ZipA involved in FtsZ binding. The X-ray crystal structure of one of these molecules complexed with ZipA was solved. The structure revealed an unexpected binding mode, facilitated by desolvation of a loosely bound surface water.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Diseño de Fármacos , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Indoles/síntesis química , Quinazolinas/síntesis química , Secuencia de Aminoácidos , Indoles/química , Indoles/metabolismo , Datos de Secuencia Molecular , Unión Proteica/fisiología , Quinazolinas/química , Quinazolinas/metabolismo
14.
Org Biomol Chem ; 1(23): 4138-40, 2003 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-14685315
15.
Anal Biochem ; 323(2): 224-33, 2003 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-14656529

RESUMEN

A fluorescence polarization competition assay has been developed to screen for inhibitors of the Escherichia coli FtsZ/ZipA protein-protein interaction. A previously published X-ray costructure demonstrated that a 17-amino-acid peptide, corresponding to FtsZ C-terminal residues 367-383 (FtsZ(367-383)), interacts with the C-terminal FtsZ binding domain of ZipA (ZipA(185-328)). Phage display was employed to identify a unique but related peptide which when further modified and labeled was shown to have a higher affinity to ZipA(185-328) than the FtsZ(367-383) peptide and binds to the same site. This peptide had a six fold increase in fluorescence polarization upon binding to ZipA(185-328) compared to a two fold increase for the FtsZ(367-383) fluorophore. As a result, assay parameters using the phage display peptide were further optimized and adapted for the high-throughput screen. A high-throughput screen of 250,000 compounds identified 29 hits with inhibition equal to or greater than 30% at 50 microg/ml. An X-ray costructure of a promising small molecule in this library complexed with ZipA(185-328) (KI=12 microM) revealed that the compound binds to the same hydrophobic pocket as the FtsZ(367-383) peptide.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Portadoras/antagonistas & inhibidores , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas de Escherichia coli/antagonistas & inhibidores , Polarización de Fluorescencia/métodos , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Unión Competitiva , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Dimetilsulfóxido/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/metabolismo , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Pirimidinas/farmacología , Relación Estructura-Actividad , Tensoactivos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...