Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 97, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372750

RESUMEN

Recent findings show that single, non-neuronal cells are also able to learn signalling responses developing cellular memory. In cellular learning nodes of signalling networks strengthen their interactions e.g. by the conformational memory of intrinsically disordered proteins, protein translocation, miRNAs, lncRNAs, chromatin memory and signalling cascades. This can be described by a generalized, unicellular Hebbian learning process, where those signalling connections, which participate in learning, become stronger. Here we review those scenarios, where cellular signalling is not only repeated in a few times (when learning occurs), but becomes too frequent, too large, or too complex and overloads the cell. This leads to desensitisation of signalling networks by decoupling signalling components, receptor internalization, and consequent downregulation. These molecular processes are examples of anti-Hebbian learning and 'forgetting' of signalling networks. Stress can be perceived as signalling overload inducing the desensitisation of signalling pathways. Ageing occurs by the summative effects of cumulative stress downregulating signalling. We propose that cellular learning desensitisation, stress and ageing may be placed along the same axis of more and more intensive (prolonged or repeated) signalling. We discuss how cells might discriminate between repeated and unexpected signals, and highlight the Hebbian and anti-Hebbian mechanisms behind the fold-change detection in the NF-κB signalling pathway. We list drug design methods using Hebbian learning (such as chemically-induced proximity) and clinical treatment modalities inducing (cancer, drug allergies) desensitisation or avoiding drug-induced desensitisation. A better discrimination between cellular learning, desensitisation and stress may open novel directions in drug design, e.g. helping to overcome drug resistance.


Asunto(s)
Aprendizaje , Transducción de Señal , Cromatina , FN-kappa B
2.
NPJ Syst Biol Appl ; 8(1): 19, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680961

RESUMEN

Regulation of translocating proteins is crucial in defining cellular behaviour. Epithelial-mesenchymal transition (EMT) is important in cellular processes, such as cancer progression. Several orchestrators of EMT, such as key transcription factors, are known to translocate. We show that translocating proteins become enriched in EMT-signalling. To simulate the compartment-specific functions of translocating proteins we created a compartmentalized Boolean network model. This model successfully reproduced known biological traits of EMT and as a novel feature it also captured organelle-specific functions of proteins. Our results predicted that glycogen synthase kinase-3 beta (GSK3B) compartment-specifically alters the fate of EMT, amongst others the activation of nuclear GSK3B halts transforming growth factor beta-1 (TGFB) induced EMT. Moreover, our results recapitulated that the nuclear activation of glioma associated oncogene transcription factors (GLI) is needed to achieve a complete EMT. Compartmentalized network models will be useful to uncover novel control mechanisms of biological processes. Our algorithmic procedures can be automatically rerun on the https://translocaboole.linkgroup.hu website, which provides a framework for similar future studies.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias , Transición Epitelial-Mesenquimal/genética , Humanos , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Trends Biochem Sci ; 45(4): 284-294, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32008897

RESUMEN

Molecular processes of neuronal learning have been well described. However, learning mechanisms of non-neuronal cells are not yet fully understood at the molecular level. Here, we discuss molecular mechanisms of cellular learning, including conformational memory of intrinsically disordered proteins (IDPs) and prions, signaling cascades, protein translocation, RNAs [miRNA and long noncoding RNA (lncRNA)], and chromatin memory. We hypothesize that these processes constitute the learning of signaling networks and correspond to a generalized Hebbian learning process of single, non-neuronal cells, and we discuss how cellular learning may open novel directions in drug design and inspire new artificial intelligence methods.


Asunto(s)
Cromatina/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Neuronas/metabolismo , ARN/metabolismo , Transducción de Señal , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...