Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Cell Mol Life Sci ; 81(1): 97, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38372750

Recent findings show that single, non-neuronal cells are also able to learn signalling responses developing cellular memory. In cellular learning nodes of signalling networks strengthen their interactions e.g. by the conformational memory of intrinsically disordered proteins, protein translocation, miRNAs, lncRNAs, chromatin memory and signalling cascades. This can be described by a generalized, unicellular Hebbian learning process, where those signalling connections, which participate in learning, become stronger. Here we review those scenarios, where cellular signalling is not only repeated in a few times (when learning occurs), but becomes too frequent, too large, or too complex and overloads the cell. This leads to desensitisation of signalling networks by decoupling signalling components, receptor internalization, and consequent downregulation. These molecular processes are examples of anti-Hebbian learning and 'forgetting' of signalling networks. Stress can be perceived as signalling overload inducing the desensitisation of signalling pathways. Ageing occurs by the summative effects of cumulative stress downregulating signalling. We propose that cellular learning desensitisation, stress and ageing may be placed along the same axis of more and more intensive (prolonged or repeated) signalling. We discuss how cells might discriminate between repeated and unexpected signals, and highlight the Hebbian and anti-Hebbian mechanisms behind the fold-change detection in the NF-κB signalling pathway. We list drug design methods using Hebbian learning (such as chemically-induced proximity) and clinical treatment modalities inducing (cancer, drug allergies) desensitisation or avoiding drug-induced desensitisation. A better discrimination between cellular learning, desensitisation and stress may open novel directions in drug design, e.g. helping to overcome drug resistance.


Learning , Signal Transduction , Chromatin , NF-kappa B
2.
Article En | MEDLINE | ID: mdl-37634036

BACKGROUND: Abiraterone (Abi) is an androgen receptor signaling inhibitor that significantly improves patients' life expectancy in metastatic prostate cancer (PCa). Despite its beneficial effects, many patients have baseline or acquired resistance against Abi. The aim of this study was to identify predictive serum biomarkers for Abi treatment. METHODS: We performed a comparative proteome analysis on three Abi sensitive (LNCaPabl, LAPC4, DuCaP) and resistant (LNCaPabl-Abi, LAPC4-Abi, DuCaP-Abi) PCa cell lines using liquid chromatography tandem mass spectrometry (LC-MS/MS) technique. Two bioinformatic selection workflows were applied to select the most promising candidate serum markers. Serum levels of selected proteins were assessed in samples of 100 Abi-treated patients with metastatic castration-resistant disease (mCRPC) using ELISA. Moreover, FSCN1 serum concentrations were measured in samples of 69 Docetaxel (Doc) treated mCRPC patients. RESULTS: Our proteome analysis identified 68 significantly, at least two-fold upregulated proteins in Abi resistant cells. Using two filtering workflows four proteins (AMACR, KLK2, FSCN1 and CTAG1A) were selected for ELISA analyses. We found high baseline FSCN1 serum levels to be significantly associated with poor survival in Abi-treated mCRPC patients. Moreover, the multivariable analysis revealed that higher ECOG status (>1) and high baseline FSCN1 serum levels (>10.22 ng/ml by ROC cut-off) were independently associated with worse survival in Abi-treated patients (p < 0.001 and p = 0.021, respectively). In contrast, no association was found between serum FSCN1 concentrations and overall survival in Doc-treated patients. CONCLUSIONS: Our analysis identified baseline FSCN1 serum levels to be independently associated with poor survival of Abi-treated, but not Doc-treated mCRPC patients, suggesting a therapy specific prognostic value for FSCN1.

3.
Cancer Med ; 12(7): 9041-9054, 2023 04.
Article En | MEDLINE | ID: mdl-36670542

OBJECTIVE: Administration of targeted therapies provides a promising treatment strategy for urachal adenocarcinoma (UrC) or primary bladder adenocarcinoma (PBAC); however, the selection of appropriate drugs remains difficult. Here, we aimed to establish a routine compatible methodological pipeline for the identification of the most important therapeutic targets and potentially effective drugs for UrC and PBAC. METHODS: Next-generation sequencing, using a 161 cancer driver gene panel, was performed on 41 UrC and 13 PBAC samples. Clinically relevant alterations were filtered, and therapeutic interpretation was performed by in silico evaluation of drug-gene interactions. RESULTS: After data processing, 45/54 samples passed the quality control. Sequencing analysis revealed 191 pathogenic mutations in 68 genes. The most frequent gain-of-function mutations in UrC were found in KRAS (33%), and MYC (15%), while in PBAC KRAS (25%), MYC (25%), FLT3 (17%) and TERT (17%) were recurrently affected. The most frequently affected pathways were the cell cycle regulation, and the DNA damage control pathway. Actionable mutations with at least one available approved drug were identified in 31/33 (94%) UrC and 8/12 (67%) PBAC patients. CONCLUSIONS: In this study, we developed a data-processing pipeline for the detection and therapeutic interpretation of genetic alterations in two rare cancers. Our analyses revealed actionable mutations in a high rate of cases, suggesting that this approach is a potentially feasible strategy for both UrC and PBAC treatments.


Adenocarcinoma , Urinary Bladder Neoplasms , Humans , Urinary Bladder/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Mutation , Urinary Bladder Neoplasms/pathology , High-Throughput Nucleotide Sequencing
4.
Int J Cancer ; 151(8): 1405-1419, 2022 10 15.
Article En | MEDLINE | ID: mdl-35689436

Enzalutamide (ENZA) is a frequently used therapy in metastatic castration-resistant prostate cancer (mCRPC). Baseline or acquired resistance to ENZA have been observed, but the molecular mechanisms of resistance are poorly understood. We aimed to identify proteins involved in ENZA resistance and to find therapy-predictive serum markers. We performed comparative proteome analyses on ENZA-sensitive parental (LAPC4, DuCaP) and -resistant prostate cancer cell lines (LAPC4-ENZA, DuCaP-ENZA) using liquid chromatography tandem mass spectrometry (LC-MS/MS). The top four most promising candidate markers were selected using bioinformatic approaches. Serum concentrations of selected markers (ALCAM, AGR2, NDRG1, IDH1) were measured in pretreatment samples of 72 ENZA-treated mCRPC patients using ELISA. In addition, ALCAM serum levels were measured in 101 Abiraterone (ABI) and 100 Docetaxel (DOC)-treated mCRPC patients' baseline samples. Results were correlated with clinical and follow-up data. The functional role of ALCAM in ENZA resistance was assessed in vitro using siRNA. Our proteome analyses revealed 731 significantly differentially abundant proteins between ENZA-sensitive and -resistant cells and our filtering methods identified four biomarker candidates. Serum analyses of these proteins revealed only ALCAM to be associated with poor patient survival. Furthermore, higher baseline ALCAM levels were associated with poor survival in ABI- but not in DOC-treated patients. In LAPC4-ENZA resistant cells, ALCAM silencing by siRNA knockdown resulted in significantly enhanced ENZA sensitivity. Our analyses revealed that ALCAM serum levels may help to identify ENZA- and ABI-resistant patients and may thereby help to optimize future clinical decision-making. Our functional analyses suggest the possible involvement of ALCAM in ENZA resistance.


Activated-Leukocyte Cell Adhesion Molecule , Cell Adhesion Molecules, Neuronal , Drug Resistance, Neoplasm , Prostatic Neoplasms, Castration-Resistant , Activated-Leukocyte Cell Adhesion Molecule/genetics , Antigens, CD/genetics , Benzamides , Cell Adhesion Molecules, Neuronal/genetics , Cell Line , Chromatography, Liquid , Docetaxel/therapeutic use , Fetal Proteins/genetics , Humans , Male , Nitriles/therapeutic use , Phenylthiohydantoin , Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Proteome , RNA, Small Interfering , Tandem Mass Spectrometry , Treatment Outcome
5.
J Cell Mol Med ; 26(4): 1332-1337, 2022 02.
Article En | MEDLINE | ID: mdl-34970839

Baseline or acquired resistance to docetaxel (DOC) represents a significant risk for patients with metastatic prostate cancer (PC). In the last years, novel therapy regimens have been approved providing reasonable alternatives for DOC-resistant patients making prediction of DOC resistance of great clinical importance. We aimed to identify serum biomarkers, which are able to select patients who will not benefit from DOC treatment. DOC-resistant PC3-DR and DU145-DR sublines and their sensitive parental cell lines (DU145, PC3) were comparatively analyzed using liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS). Results were filtered using bioinformatics approaches to identify promising serum biomarkers. Serum levels of five proteins were determined in serum samples of 66 DOC-treated metastatic castration-resistant PC patients (mCRPC) using ELISA. Results were correlated with clinicopathological and survival data. CD44 was subjected to further functional cell culture analyses. We found at least 177 two-fold significantly overexpressed proteins in DOC-resistant cell lines. Our bioinformatics method suggested 11/177 proteins to be secreted into the serum. We determined serum levels of five (CD44, MET, GSN, IL13RA2 and LNPEP) proteins in serum samples of DOC-treated patients and found high CD44 serum levels to be independently associated with poor overall survival (p = 0.001). In accordance, silencing of CD44 in DU145-DR cells resulted in re-sensitization to DOC. In conclusion, high serum CD44 levels may help identify DOC-resistant patients and may thereby help optimize clinical decision-making regarding type and timing of therapy for mCRPC patients. In addition, our in vitro results imply the possible functional involvement of CD44 in DOC resistance.


Antineoplastic Agents , Prostatic Neoplasms, Castration-Resistant , Antineoplastic Agents/pharmacology , Biomarkers , Chromatography, Liquid , Docetaxel/pharmacology , Docetaxel/therapeutic use , Drug Resistance, Neoplasm/genetics , Humans , Hyaluronan Receptors/genetics , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Proteome , Tandem Mass Spectrometry
6.
Pathol Oncol Res ; 26(4): 2773-2781, 2020 Oct.
Article En | MEDLINE | ID: mdl-32754865

Urachal carcinoma (UrC) is a rare tumor with remarkable histological and molecular similarities to colorectal cancer (CRC). Adenomatous polyposis coli (APC) is the most frequently affected gene in CRC, but the prevalence and significance of its alterations in UrC is poorly understood. In addition, loss of phosphatase and tensin homologue (PTEN) was shown to be associated with therapy resistance in CRC. Our primary aim was to assess specific genetic alterations including APC and PTEN in a large series of UrC samples in order to identify clinically significant genomic alterations. We analyzed a total of 40 UrC cases. Targeted 5-gene (APC, PTEN, DICER1, PRKAR1A, TSHR, WRN) panel sequencing was performed on the Illumina MiSeq platform (n = 34). In addition, ß-catenin (n = 38) and PTEN (n = 30) expressions were assessed by immunohistochemistry. APC and PTEN genes were affected in 15% (5/34) and 6% (2/34) of cases. Two of five APC alterations (p.Y1075*, p.K1199*) were truncating pathogenic mutations. One of the two PTEN variants was a pathogenic frameshift insertion (p.C211fs). In 29% (11/38) of samples, at least some weak nuclear ß-catenin immunostaining was detected and PTEN loss was observed in 20% (6/30) of samples. The low prevalence of APC mutations in UrC represents a characteristic difference to CRC. Based on APC and ß-catenin results, the Wnt pathway seems to be rarely affected in UrC. Considering the formerly described involvement of PTEN protein loss in anti-EGFR therapy-resistance its immunohistochemical testing may have therapeutic relevance.


Adenocarcinoma/pathology , Adenomatous Polyposis Coli Protein/genetics , Cystectomy/mortality , Mutation , PTEN Phosphohydrolase/genetics , Urinary Bladder Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/surgery , Adult , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prevalence , Prognosis , Retrospective Studies , Survival Rate , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/surgery , Wnt Signaling Pathway , Young Adult , beta Catenin/genetics , beta Catenin/metabolism
7.
Orv Hetil ; 161(20): 813-820, 2020 05 01.
Article Hu | MEDLINE | ID: mdl-32364360

In the last few years, several new drugs with various mechanisms of action have been approved for the treatment of castration-resistant prostate cancer. Due to this development, therapeutic decision-making has become increasingly complex. Therefore, therapy selection as well as timing and sequence of treatments need to be optimized in an individual manner. In addition, also for these novel therapies, baseline and acquired as well as cross-resistance have been observed. Underlying mechanisms become increasingly clear, resulting in a shift from empiric-based towards rational-based therapeutic decision-making. In the present review, we provide an overview on the resistance mechanisms against the most frequently applied systemic treatments of metastatic castration-resistant prostate cancer such as docetaxel, abiraterone and enzalutamide. We summarize - among others - the mechanisms by MDR (multidrug-resistant) protein expression, alterations of androgen receptor, Wnt, p53 and DNA-repair pathways (BRCA/ATM) as well as resistance through therapy-induced neuroendocrine differentiation of the tumour. Orv Hetil. 2020; 161(20): 813-820.


Androgen Antagonists/therapeutic use , Androstenes/therapeutic use , Docetaxel/therapeutic use , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/drug therapy , Antineoplastic Agents/therapeutic use , Benzamides , Drug Resistance, Neoplasm , Humans , Male , Neoplasm Metastasis , Nitriles , Phenylthiohydantoin/therapeutic use , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Treatment Outcome
8.
BJU Int ; 122(4): 695-704, 2018 10.
Article En | MEDLINE | ID: mdl-29802777

OBJECTIVE: To assess the predictive value of pre-chemotherapy matrix metalloproteinase 7 (MMP-7), soluble Fas (sFas) and Fas ligand (FasL) serum levels, as well as their changes during therapy. PATIENTS AND METHODS: Serum levels of MMP-7, Fas and FasL were determined by ELISA in 96 patients with castration-resistant prostate cancer (CRPC): 21 docetaxel-resistant patients who received one single series and 75 docetaxel-sensitive patients who received repeated series of docetaxel. In addition to the 96 pretreatment serum samples, 987 sera collected during chemotherapy were also analysed. RESULTS: Higher pretreatment serum MMP-7, sFas and prostate-specific antigen (PSA) levels were significantly associated with both docetaxel resistance (P = 0.007, P = 0.001, P < 0.001, respectively) and shorter cancer-specific survival (P < 0.001, P = 0.041, P < 0.001, respectively). High MMP-7 level remained an independent predictor of both docetaxel resistance (hazard ratio [HR] 2.298, 95% confidence interval [CI]: 1.354-3.899; P = 0.002) and poor cancer-specific survival (HR 2.11, 95% CI: 1.36-3.30; P = 0.001) in multivariable analyses. Greater increase in MMP-7 levels in the second treatment holiday and greater increase in PSA levels in the first and second treatment holidays were predictive of survival. CONCLUSIONS: Pretreatment serum MMP-7 levels may help to select patients with CRPC who are likely to benefit from docetaxel chemotherapy. Furthermore, MMP-7 levels alone or in combination with PSA levels could be used for therapy monitoring. Correlative studies embedded in clinical trials are necessary to validate these biomarkers for clinical decision-making.


Antineoplastic Agents/therapeutic use , Docetaxel/therapeutic use , Drug Resistance, Neoplasm/drug effects , Fas Ligand Protein/blood , Matrix Metalloproteinase 7/blood , Prostatic Neoplasms, Castration-Resistant/blood , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols , Cohort Studies , Humans , Male , Middle Aged , Predictive Value of Tests , Prostate-Specific Antigen/blood , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/mortality , Prostatic Neoplasms, Castration-Resistant/pathology , Survival Analysis , Treatment Outcome
9.
Urol Oncol ; 36(6): 312.e9-312.e15, 2018 06.
Article En | MEDLINE | ID: mdl-29628317

OBJECTIVES: Docetaxel chemotherapy is a standard treatment for castration-resistant prostate cancer (CRPC). Rapidly expanding treatment options for CRPC provide reasonable alternatives for those who are resistant to docetaxel. Therefore, prediction of docetaxel resistance has become of great clinical importance. Syndecan-1 (SDC1) has been currently shown to be involved in chemotherapy resistance in various malignancies including prostate cancer. The predicting value of serum SDC1 level has not been evaluated yet. PATIENTS AND METHODS: We assessed the baseline levels of SDC1 in serum samples of 75 patients with CRPC who received docetaxel therapy until the appearance of therapy resistance. In one patient who was treated with three treatment series, we assessed also 6 additional serum samples collected during a 1-year treatment period. Serum SDC1 levels were correlated with clinical outcomes as well as with serum levels of MMP7. RESULTS: Pretreatment SDC1 serum levels were not associated with patients' age, the presence of bone or visceral metastases. In univariable analyses, patients' performance status, the presence of bone or visceral metastases, high pretreatment prostate specific antigen and SDC1 levels were significantly associated with cancer-specific survival. In multivariable analysis patients' performance status (P = 0.005), presence of bone or visceral metastases (P = 0.013) and high SDC1 level (P = 0.045) remained independent predictors of patients' survival. In the patient with available follow-up samples serum SDC1 level increased from 50 to 300ng/ml at radiographic progression. Serum concentrations of SDC1 were correlated with those of MMP7 (r = 0.420, P = 0.006). CONCLUSIONS: Our present results together with currently published data suggest a role for SDC1 shedding in chemotherapy resistance. Determination of serum SDC1 may contribute to the prediction of docetaxel resistance and therefore may help to facilitate clinical decision-making regarding the type and timing of therapy for patients with CRPC.


Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/blood , Bone Neoplasms/secondary , Drug Resistance, Neoplasm , Prostatic Neoplasms, Castration-Resistant/pathology , Syndecan-1/blood , Aged , Aged, 80 and over , Bone Neoplasms/blood , Bone Neoplasms/drug therapy , Case-Control Studies , Follow-Up Studies , Humans , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Invasiveness , Prognosis , Prospective Studies , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/drug therapy , Survival Rate
10.
Int J Cancer ; 143(7): 1764-1773, 2018 10 01.
Article En | MEDLINE | ID: mdl-29672836

Urachal cancer (UrC) is a rare but aggressive malignancy often diagnosed in advanced stages requiring systemic treatment. Although cytotoxic chemotherapy is of limited effectiveness, prospective clinical studies can hardly be conducted. Targeted therapeutic treatment approaches and potentially immunotherapy based on a biological rationale may provide an alternative strategy. We therefore subjected 70 urachal adenocarcinomas to targeted next-generation sequencing, conducted in situ and immunohistochemical analyses (including PD-L1 and DNA mismatch repair proteins [MMR]) and evaluated the microsatellite instability (MSI) status. The analytical findings were correlated with clinicopathological and outcome data and Kaplan-Meier and univariable/multivariable Cox regression analyses were performed. The patients had a mean age of 50 years, 66% were male and a 5-year overall survival (OS) of 58% and recurrence-free survival (RFS) of 45% was detected. Sequence variations were observed in TP53 (66%), KRAS (21%), BRAF (4%), PIK3CA (4%), FGFR1 (1%), MET (1%), NRAS (1%), and PDGFRA (1%). Gene amplifications were found in EGFR (5%), ERBB2 (2%), and MET (2%). We detected no evidence of MMR-deficiency (MMR-d)/MSI-high (MSI-h), whereas 10 of 63 cases (16%) expressed PD-L1. Therefore, anti-PD-1/PD-L1 immunotherapy approaches might be tested in UrC. Importantly, we found aberrations in intracellular signal transduction pathways (RAS/RAF/PI3K) in 31% of UrCs with potential implications for anti-EGFR therapy. Less frequent potentially actionable genetic alterations were additionally detected in ERBB2 (HER2), MET, FGFR1, and PDGFRA. The molecular profile strengthens the notion that UrC is a distinct entity on the genomic level with closer resemblance to colorectal than to bladder cancer.


Adenocarcinoma/genetics , Adenocarcinoma/pathology , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Microsatellite Instability , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Adenocarcinoma, Mucinous/genetics , Adenocarcinoma, Mucinous/pathology , Adult , Aged , Carcinoma, Signet Ring Cell/genetics , Carcinoma, Signet Ring Cell/pathology , Female , Follow-Up Studies , Gene Amplification , Gene Expression Profiling , Humans , Male , Middle Aged , Mutation , Prognosis , Young Adult
...