Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 59
1.
Front Behav Neurosci ; 16: 775796, 2022.
Article En | MEDLINE | ID: mdl-35368304

Recent research into the effects of hormonal contraceptives on emotion processing and brain function suggests that hormonal contraceptive users show (a) reduced accuracy in recognizing emotions compared to naturally cycling women, and (b) alterations in amygdala volume and connectivity at rest. To date, these observations have not been linked, although the amygdala has certainly been identified as core region activated during emotion recognition. To assess, whether volume, oscillatory activity and connectivity of emotion-related brain areas at rest are predictive of participant's ability to recognize facial emotional expressions, 72 participants (20 men, 20 naturally cycling women, 16 users of androgenic contraceptives, 16 users of anti-androgenic contraceptives) completed a brain structural and resting state fMRI scan, as well as an emotion recognition task. Our results showed that resting brain characteristics did not mediate oral contraceptive effects on emotion recognition performance. However, sex and oral contraceptive use emerged as a moderator of brain-behavior associations. Sex differences did emerge in the prediction of emotion recognition performance by the left amygdala amplitude of low frequency oscillations (ALFF) for anger, as well as left and right amygdala connectivity for fear. Anti-androgenic oral contraceptive users (OC) users stood out in that they showed strong brain-behavior associations, usually in the opposite direction as naturally cycling women, while androgenic OC-users showed a pattern similar to, but weaker, than naturally cycling women. This result suggests that amygdala ALFF and connectivity have predictive values for facial emotion recognition. The importance of the different connections depends heavily on sex hormones and oral contraceptive use.

2.
Front Cell Dev Biol ; 9: 651982, 2021.
Article En | MEDLINE | ID: mdl-34249909

The volumes of a cell [cell volume (CV)] and its organelles are adjusted by osmoregulatory processes. During pinocytosis, extracellular fluid volume equivalent to its CV is incorporated within an hour and membrane area equivalent to the cell's surface within 30 min. Since neither fluid uptake nor membrane consumption leads to swelling or shrinkage, cells must be equipped with potent volume regulatory mechanisms. Normally, cells respond to outwardly or inwardly directed osmotic gradients by a volume decrease and increase, respectively, i.e., they shrink or swell but then try to recover their CV. However, when a cell death (CD) pathway is triggered, CV persistently decreases in isotonic conditions in apoptosis and it increases in necrosis. One type of CD associated with cell swelling is due to a dysfunctional pinocytosis. Methuosis, a non-apoptotic CD phenotype, occurs when cells accumulate too much fluid by macropinocytosis. In contrast to functional pinocytosis, in methuosis, macropinosomes neither recycle nor fuse with lysosomes but with each other to form giant vacuoles, which finally cause rupture of the plasma membrane (PM). Understanding methuosis longs for the understanding of the ionic mechanisms of cell volume regulation (CVR) and vesicular volume regulation (VVR). In nascent macropinosomes, ion channels and transporters are derived from the PM. Along trafficking from the PM to the perinuclear area, the equipment of channels and transporters of the vesicle membrane changes by retrieval, addition, and recycling from and back to the PM, causing profound changes in vesicular ion concentrations, acidification, and-most importantly-shrinkage of the macropinosome, which is indispensable for its proper targeting and cargo processing. In this review, we discuss ion and water transport mechanisms with respect to CVR and VVR and with special emphasis on pinocytosis and methuosis. We describe various aspects of the complex mutual interplay between extracellular and intracellular ions and ion gradients, the PM and vesicular membrane, phosphoinositides, monomeric G proteins and their targets, as well as the submembranous cytoskeleton. Our aim is to highlight important cellular mechanisms, components, and processes that may lead to methuotic CD upon their derangement.

3.
Cell Physiol Biochem ; 55(S1): 171-184, 2021 Jun 23.
Article En | MEDLINE | ID: mdl-34156175

BACKGROUND/AIMS: Trypan blue is routinely used in cell culture experiments to distinguish between dead cells, which are labelled by trypan blue, and viable cells, which are apparently free of any staining. The assumption that trypan blue labelling is restricted to dead cells derives from the observation that rupture of the plasma membrane correlates with intense trypan blue staining. However, decades ago, trypan blue has been used to trace fluid uptake by viable macrophage-like cells in animals. These studies contributed to the concept of the reticuloendothelial system in vertebrates. Trypan blue itself does not show a fluorescence signal, but trypan blue-labelled proteins do. Therefore, intracellular localization of trypan blue-labelled proteins could give a clue to the entrance pathway of the dye in viable cells. METHODS: We used fluorescence microscopy to visualize trypan blue positive structures and to evaluate whether the bactericide, silver, enhances cellular trypan blue uptake in the brain macrophage-like cell line, BV-2. The pattern of chromatin condensation, visualized by DAPI staining, was used to identify the cell death pathway. RESULTS: We observed that silver nitrate at elevated concentrations (≥ 10 µM) induced in most cells a necrotic cell death pathway. Necrotic cells, identified by pycnotic nuclei, showed an intense and homogenous trypan blue staining. Apoptotic cells, characterized by crescent-like nuclear chromatin condensations, were not labelled by trypan blue. At lower silver nitrate concentrations, most cells were viable, but they showed trypan blue labelling. Viable cells showed a cell-type specific distribution of heterochromatin and revealed a perinuclear accumulation of bright trypan blue-labelled vesicles and, occasionally, a faint homogenous trypan blue labelling of the cytoplasm and nucleus. Amiloride, which prevents macropinocytosis by blocking the Na+ / H+ exchange, suppressed perinuclear accumulation of dye-labelled vesicles. Swelling of cells in a hypotonic solution induced an intense intracellular accumulation of trypan blue. Cells exposed to a hypotonic solution in the presence of 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), which blocks volume-regulated ion channels, prevented labelling of the cytoplasm and nucleus but did not affect labelling of perinuclear vesicles. CONCLUSION: In viable cells trypan blue-labelled vesicles indicate trypan blue uptake by macropinocytosis and trypan blue-labelled cytosol could indicate a further entry pathway for the dye, like activated volume-regulated channels. Accordingly, fluorescence microscopic analysis of trypan blue-labelled cells allows not only a discrimination between necrotic and apoptotic cell death pathway but also a discrimination between the mode of trypan blue uptake in viable cells - via pinocytosis or via activated volume-regulated ion channels - in the same preparation at the single cell level.


Coloring Agents/analysis , Microglia/cytology , Pinocytosis , Trypan Blue/analysis , Animals , Cell Death , Cell Line , Cell Survival , Mice , Microscopy, Fluorescence/methods , Staining and Labeling/methods
4.
J Sleep Res ; 30(4): e13239, 2021 08.
Article En | MEDLINE | ID: mdl-33348471

Sleep spindles benefit declarative memory consolidation and are considered to be a biological marker for general cognitive abilities. However, the impact of sexual hormones and hormonal oral contraceptives (OCs) on these relationships are less clear. Thus, we here investigated the influence of endogenous progesterone levels of naturally cycling women and women using OCs on nocturnal sleep and overnight memory consolidation. Nineteen healthy women using OCs (MAge  = 21.4, SD = 2.1 years) were compared to 43 healthy women with a natural menstrual cycle (follicular phase: n = 16, MAge  = 21.4, SD = 3.1 years; luteal phase: n = 27, MAge  = 22.5, SD = 3.6 years). Sleep spindle density and salivary progesterone were measured during an adaptation and an experimental night. A word pair association task preceding the experimental night followed by two recalls (pre-sleep and post-sleep) was performed to test declarative memory performance. We found that memory performance improved overnight in all women. Interestingly, women using OCs (characterized by a low endogenous progesterone level but with very potent synthetic progestins) and naturally cycling women during the luteal phase (characterized by a high endogenous progesterone level) had a higher fast sleep spindle density compared to naturally cycling women during the follicular phase (characterized by a low endogenous progesterone level). Furthermore, we observed a positive correlation between endogenous progesterone level and fast spindle density in women during the luteal phase. Results suggest that the use of OCs and the menstrual cycle phase affects sleep spindles and therefore should be considered in further studies investigating sleep spindles and cognitive performance.


Contraceptives, Oral/pharmacology , Memory Consolidation/drug effects , Menstrual Cycle/drug effects , Menstrual Cycle/psychology , Sleep/drug effects , Female , Humans , Mental Recall/drug effects , Young Adult
5.
Int J Mol Sci ; 21(3)2020 Jan 26.
Article En | MEDLINE | ID: mdl-31991850

Microglia are first-line defense antigen-presenting phagocytes in the central nervous system. Activated microglial cells release pro-inflammatory cytokines and can trigger an oxidative burst. The amino acid glycine exerts anti-inflammatory, immunomodulatory and cytoprotective effects and influences cell volume regulation. This study aimed to investigate the role of glycine in the modulation of inflammatory processes in mouse BV-2 microglial cells. Inflammatory stress was induced by lipopolysaccharide/interferon-γ (LPS/IFN-γ) treatment for 24 h in the absence or presence of 1 or 5 mM glycine. Cells were analyzed by flow cytometry for cell volume, side scatter, apoptosis/necrosis and expression of activation-specific surface markers. Apoptosis progression was monitored by life cell imaging. Reduced glutathione/oxidized glutathione (GSH/GSSG) ratios and release of the pro-inflammatory cytokines IL-6 and TNF-α were measured using luminescence-based assays and ELISA, respectively. We found that LPS/IFN-γ-induced apoptosis was decreased and the fraction of living cells was increased by glycine. Expression of the surface markers CD11b, CD54 and CD80 was dose-dependently increased, while IL-6 and TNF-α release was not altered compared to LPS/IFN-γ-treated cells. We showed that in BV-2 microglial cells glycine improves viability and counteracts deleterious responses to LPS/IFN-γ, which might be relevant in neurodegenerative processes associated with inflammation, like Alzheimer's or Parkinson's disease.


Apoptosis/drug effects , Glycine/pharmacokinetics , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Microglia/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Antigens, CD/metabolism , Cell Line, Transformed , Glutathione/metabolism , Humans , Interleukin-6/metabolism , Mice , Microglia/pathology , Oxidation-Reduction/drug effects , Parkinson Disease/metabolism , Parkinson Disease/pathology , Tumor Necrosis Factor-alpha/metabolism
6.
Cell Physiol Biochem ; 52(5): 951-969, 2019.
Article En | MEDLINE | ID: mdl-30977982

BACKGROUND/AIMS: Volume-regulated anion channels (VRACs) are of particular importance in regulating the cell volume (CV) and give rise to the swelling-activated Cl- current (ICl,swell), a main component driving global regulatory volume decrease (RVD) during cell swelling. Because ICl,swell affects numerous CV-regulated processes like migration, we assume that its role is also indispensable for phagocytosis which requires local cell swelling. Noradrenaline (NA) modulates phagocytosis in macrophages and microglial cells, macrophage-related cells in the central nervous system. Therefore we evaluated whether NA modulates ICl,swell and phagocytosis in microglia. METHODS: Experiments were performed in murine microglial BV-2 and primary mouse microglial cells. Patch clamp experiments were performed in BV-2 cells using the amphotericin-perforated method to minimize cytosolic disturbances. Phagocytosis was quantified by scanning electron microscopy. RESULTS: Following activation of ICl,swell by a hypotonic bath solution, noradrenaline, as well as the ß-adrenergic agonist isoproterenol, evoked a transient decrease of ICl,swell. Repeated application of adrenergic agonists caused a decline of this electrical response. Application of the agonist of exchange protein directly activated by cAMP (Epac), 8-pCPT-2-O-Me-cAMP, or the protein kinase A inhibitor H89 caused a persistent suppression of ICl,swell. When isoproterenol was added concomitantly with the hypotonic saline, ICl,swell developed more rapidly compared to control conditions. Uptake of IgG-coated beads was suppressed by NA or H89 when quantified after 15 min of exposure. CONCLUSION: The activation of ß-adrenergic receptors in microglial cells triggers a cAMP-Epac-dependent and a cAMP-PKA-dependent cascade which affects phagocytosis via modulation of the swelling-activated Cl- current ICl,swell.


Chlorides/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Microglia/metabolism , Phagocytosis , Second Messenger Systems , Animals , Cell Size , Cells, Cultured , Cyclic AMP/metabolism , Ion Transport , Mice , Microglia/pathology
7.
Cell Physiol Biochem ; 50(4): 1460-1473, 2018.
Article En | MEDLINE | ID: mdl-30359963

BACKGROUND/AIMS: The neutral, non-essential amino acid glycine has manifold functions and effects under physiological and pathophysiological conditions. Besides its function as a neurotransmitter in the central nervous system, glycine also exerts immunomodulatory effects and as an osmolyte it participates in cell volume regulation. During phagocytosis, glycine contributes to (local) cell volume-dependent processes like lamellipodium formation. Similar to the expansion of the lamellipodium we assume that glycine also affects the migration of microglial cells in a cell volume-dependent manner. METHODS: Mean cell volume (MCV) and cell migration were determined using flow cytometry and trans-well migration assays, respectively. Electrophysiological recordings of the cell membrane potential (Vmem) and swelling-dependent chloride (Cl-) currents (IClswell, VSOR, VRAC) were performed using the whole-cell patch clamp technique. RESULTS: In the murine microglial cell line BV-2, flow cytometry analysis revealed that glycine (5 mM) increases the MCV by ∼9%. The glycine-dependent increase in MCV was suppressed by the partial sodium-dependent neutral amino acid transporter (SNAT) antagonist MeAIB and augmented by the Cl- current blocker DCPIB. Electrophysiological recordings showed that addition of glycine activates a Cl- current under isotonic conditions resembling features of the swelling-activated Cl- current (IClswell). The cell membrane potential (Vmem) displayed a distinctive time course after glycine application; initially, glycine evoked a rapid depolarization mediated by Na+-coupled glycine uptake via SNAT, followed by a further gradual depolarization, which was fully suppressed by DCPIB. Interestingly, glycine significantly increased migration of BV-2 cells, which was suppressed by MeAIB, suggesting that SNAT is involved in the migration process of microglial cells. CONCLUSION: We conclude that glycine acts as a chemoattractant for microglial cells presumably by a cell volume-dependent mechanism involving SNAT-mediated cell swelling.


Amino Acid Transport System A/metabolism , Cell Size/drug effects , Glycine/pharmacology , Amino Acid Transport System A/antagonists & inhibitors , Animals , Cell Line , Cell Movement/drug effects , Chlorides/metabolism , Cyclopentanes/pharmacology , Hypotonic Solutions/pharmacology , Indans/pharmacology , Membrane Potentials/drug effects , Mice , Microglia/cytology , Microglia/metabolism , Nitrobenzoates/pharmacology , Patch-Clamp Techniques
8.
J Struct Biol ; 204(1): 52-63, 2018 10.
Article En | MEDLINE | ID: mdl-29981486

Mitochondria are central organelles for energy supply of cells and play an important role in maintenance of ionic balance. Consequently mitochondria are highly sensitive to any kind of stress to which they mainly response by disturbance of respiration, ROS production and release of cytochrome c into the cytoplasm. Many of the physiological and molecular stress reactions of mitochondria are well known, yet there is a lack of information on corresponding stress induced structural changes. 3-D visualization of high-pressure frozen cells by FIB-SEM tomography and TEM tomography as used for the present investigation provide an excellent tool for studying structure related mitochondrial stress reactions. In the present study it is shown that mitochondria in the unicellular fresh-water algal model system Micrasterias as well as in the closely related aquatic higher plant Lemna fuse to local networks as a consequence of exposure to ionic stress induced by addition of KCl, NaCl and CoCl2. In dependence on concentration and duration of the treatment, fusion of mitochondria occurs either by formation of protuberances arising from the outer mitochondrial membrane, or by direct contact of the surface of elongated mitochondria. As our results show that respiration is maintained in both model systems during ionic stress and mitochondrial fusion, as well as formation of protuberances are reversible, we assume that mitochondrial fusion is a ubiquitous process that may help the cells to cope with stress. This may occur by interconnecting the respiratory chains of the individual mitochondria and by enhancing the buffer capacity against stress induced ionic imbalance.


Electron Microscope Tomography/methods , Cobalt/chemistry , Microscopy, Electron, Transmission , Mitochondria/ultrastructure , Osmolar Concentration , Potassium Chloride/chemistry , Sodium Chloride/chemistry
9.
Psychoneuroendocrinology ; 87: 20-26, 2018 Jan.
Article En | MEDLINE | ID: mdl-29032323

Women are at higher risk for Posttraumatic Stress Disorder (PTSD) and recent research has highlighted a modulating role of female sex hormones for cognitive and emotional processes potentially underlying PTSD symptoms. However, studies combining fMRI recordings of brain activity during trauma film viewing with assessment of female sex hormones are missing. The trauma film paradigm - a widely used experimental analogue for trauma exposure - confronts healthy participants with traumatic film clips and thus allows studying peritraumatic processing under laboratory conditions. Following this paradigm, the current fMRI study examined the role of endogenous estradiol and synthetic sex hormones for the neural processing of traumatic (i.e., depicting interpersonal violence) vs. neutral films in 53 healthy women (mean age 22.3 years; 23 using hormonal contraception, HC). As predicted, traumatic films strongly activated areas of the fear processing network, such as amygdala, insula, and dorsal anterior cingulate cortex. Estradiol levels in women not using HC were positively correlated with ventromedial prefrontal activity. Furthermore, women using HC as compared to women without HC demonstrated heightened insula and dorsal anterior cingulate cortex activity during traumatic film viewing. These experimental results highlight the effects of both gonadal hormone status and HC intake on peritraumatic processing in neural regions relevant for emotion generation and regulation that have been found to be abnormal in PTSD.


Contraceptives, Oral, Hormonal/metabolism , Estradiol/physiology , Neural Pathways/drug effects , Adult , Amygdala/drug effects , Brain/drug effects , Brain Mapping/methods , Cerebral Cortex/drug effects , Contraceptives, Oral, Hormonal/pharmacology , Emotions/physiology , Estradiol/metabolism , Female , Gyrus Cinguli/drug effects , Humans , Magnetic Resonance Imaging/methods , Prefrontal Cortex/drug effects , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/psychology , Violence/psychology , Visual Perception , Wounds and Injuries/psychology , Young Adult
10.
J Neurosci Res ; 95(1-2): 251-259, 2017 01 02.
Article En | MEDLINE | ID: mdl-27870411

During the course of serious discussion, an unexpected interruption may induce forgetting of the original topic of a conversation. Sex, age, and sex hormone levels may affect frequency and extension of forgetting. In a list-method directed forgetting paradigm, subjects have to learn two word lists. After learning list 1, subjects receive either a forget or a remember list 1 cue. When the participants had learned list 2 and completed a distraction task, they were asked to write down as many recalled items as possible, starting either with list 1 or list 2 items. In the present study, 96 naturally cycling women, 60 oral contraceptive users, 56 postmenopausal women, and 41 young men were assigned to one of these different experimental conditions. Forget-cued young subjects recall fewer list 1 items (list 1 forgetting) but more list 2 items (list 2 enhancement) compared with remember-cued subjects. However, forget-cued postmenopausal women showed reduced list 1 forgetting but enhanced list 2 retention. Remember-cued naturally cycling women recalled more list 1 items than oral contraceptive users, young men, and postmenopausal women. In forget-cued follicular women, salivary progesterone correlated positively with recalled list 2 items. Salivary 17ß-estradiol did not correlate with recalled list 1 or list 2 items in either remember- or forget-cued young women. However, salivary 17ß-estradiol correlated with item recall in remember-cued postmenopausal women. Our findings suggest that sex hormones do not globally modulate verbal memory or forgetting, but selectively affect cue-specific processing. © 2016 Wiley Periodicals, Inc.


Aging/physiology , Estradiol/metabolism , Memory Disorders/metabolism , Mental Recall/physiology , Progesterone/metabolism , Sex Characteristics , Vocabulary , Adolescent , Adult , Aged , Aged, 80 and over , Cues , Female , Humans , Male , Memory Disorders/physiopathology , Middle Aged , Saliva/metabolism , Verbal Learning/physiology , Young Adult
11.
Brain Connect ; 6(7): 572-85, 2016 09.
Article En | MEDLINE | ID: mdl-27239684

Menstrual cycle-dependent changes have been reported for a variety of functions, including cognition, attention, emotion, inhibition, and perception. For several of these functions, an effect of hormonal contraceptives has also been discussed. Cognitive, attentional, emotional, inhibitory, and perceptual functions have been linked to distinct intrinsic connectivity networks during the resting state. However, changes in resting-state connectivity across the menstrual cycle phase and due to hormonal contraceptive use have only been investigated in two selected networks and without controlling for the type of hormonal contraceptives. In the present study, we demonstrate menstrual cycle and hormonal contraceptive-dependent changes in several intrinsic connectivity networks, including networks that have been related to emotion processing, olfaction, audition, vision, coordination, and two lateralized frontoparietal networks related to a variety of cognitive functions. These changes parallel behavioral changes in the functions associated with these networks. Changes in connectivity and changes in behavior occur during the same cycle phases. Furthermore, hormonal contraceptive-dependent effects were observed in the same networks and same target sites as menstrual cycle-related changes and were dependent on the androgenicity of the progestin component contained in the hormonal contraceptive.


Brain/physiology , Contraceptives, Oral, Hormonal/pharmacology , Gonadal Steroid Hormones/blood , Menstrual Cycle , Adult , Brain/drug effects , Brain Mapping , Estradiol/blood , Female , Humans , Magnetic Resonance Imaging , Menstrual Cycle/drug effects , Neural Pathways/drug effects , Neural Pathways/physiology , Progesterone/blood , Testosterone/blood , Young Adult
12.
Front Psychol ; 7: 91, 2016.
Article En | MEDLINE | ID: mdl-26924996

Mathematics anxiety involves feelings of tension, discomfort, high arousal, and physiological reactivity interfering with number manipulation and mathematical problem solving. Several factor analytic models indicate that mathematics anxiety is rather a multidimensional than unique construct. However, the factor structure of mathematics anxiety has not been fully clarified by now. This issue shall be addressed in the current study. The Mathematics Anxiety Rating Scale (MARS) is a reliable measure of mathematics anxiety (Richardson and Suinn, 1972), for which several reduced forms have been developed. Most recently, a shortened version of the MARS (MARS30-brief) with comparable reliability was published. Different studies suggest that mathematics anxiety involves up to seven different factors. Here we examined the factor structure of the MARS30-brief by means of confirmatory factor analysis. The best model fit was obtained by a six-factor model, dismembering the known two general factors "Mathematical Test Anxiety" (MTA) and "Numerical Anxiety" (NA) in three factors each. However, a more parsimonious 5-factor model with two sub-factors for MTA and three for NA fitted the data comparably well. Factors were differentially susceptible to sex differences and differences between majors. Measurement invariance for sex was established.

13.
Cogn Process ; 17(2): 147-54, 2016 May.
Article En | MEDLINE | ID: mdl-26861245

The present study aims to identify factors that may influence the dissociability of number magnitude processing and arithmetic fact retrieval at the behavioural level. To that end, we assessed both subtraction and multiplication performance in a within-subject approach and evaluated the interdependence of unit-decade integration measures on the one hand as well as sex differences in the interdependence of performance measures on the other hand. We found that subtraction items requiring borrowing (e.g. 53-29 = 24, 3 < 9) are more error prone than subtraction items not requiring borrowing (e.g. 59-23 = 34, 9 > 3), thereby demonstrating a borrowing effect, which has been suggested as a measure of unit-decade integration in subtraction. Furthermore, we observed that multiplication items with decade-consistent distractors (e.g. 6 × 4 = 28 instead of 24) are more error prone that multiplication items with decade-inconsistent distractors (e.g. 6 × 4 = 30 instead of 24), thereby demonstrating a decade-consistency effect, which has been suggested as a measure of unit-decade integration in simple multiplication. However, the borrowing effect in subtraction was not correlated with the effect of decade consistency in simple multiplication in either men or women. This indicates that unit-decade integration arises from different systems in subtraction and multiplication. Nevertheless, men outperformed women not only in subtraction, but also in multiplication. Furthermore, subtraction and multiplication performance on correct solution probes were correlated in women, but unrelated in men. Thus, the view of differential systems for number magnitude processing and arithmetic fact retrieval may not be universal across sexes.


Mathematics , Problem Solving/physiology , Sex Characteristics , Adult , Analysis of Variance , Female , Humans , Male , Mental Recall/physiology , Statistics as Topic , Time Factors , Young Adult
14.
Neuropeptides ; 56: 83-8, 2016 04.
Article En | MEDLINE | ID: mdl-26725588

Galanin and its receptors (GAL1, GAL2, GAL3) modulate a range of neuronal, immune and vascular activities. In vivo administration of SNAP 37889 (1-phenyl-3-[[3-(trifluoromethyl)phenyl]imino]-1H-indol-2-one), a potent small non-peptidergic antagonist of GAL3, was reported to reduce anxiety- and depression-related behavior, ethanol consumption, and antagonizes the effect of galanin on plasma extravasation in rodent models. Accordingly, SNAP 37889 has been proposed as a potential therapeutic agent to treat anxiety and depression disorders. Therefore, we evaluated the toxicity of SNAP 37889 to different cell types. Our experiments revealed that SNAP 37889 (≥10µM) induced apoptosis in epithelial (HMCB) and microglial (BV-2) cell lines expressing endogenous GAL3, in peripheral blood mononuclear cells and promyelocytic leukemia cells (HL-60) expressing GAL2, and in a neuronal cell line (SH-SY5Y) lacking galanin receptor expression altogether. In conclusion, SNAP 37889 is toxic to a variety of cell types independent of GAL3 expression. We caution that the clinical use of SNAP 37889 at doses that might be used to treat anxiety- or depression- related diseases could have unexpected non-galanin receptor-mediated toxicity, especially on immune cells.


Apoptosis/drug effects , Indoles/toxicity , Receptor, Galanin, Type 3/antagonists & inhibitors , Animals , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Epithelial Cells/drug effects , Humans , In Vitro Techniques , Leukocytes, Mononuclear/drug effects , Mice , Microglia/drug effects , Neurons/drug effects
15.
Neuro Endocrinol Lett ; 36(3): 196-200, 2015.
Article En | MEDLINE | ID: mdl-26313383

OBJECTIVES: Although there is consensus that sex hormones modulate memory, we have an incomplete understanding of their role in remembering and forgetting. Humans continuously update memory, forgetting old, out-of-date information and encoding new, more relevant information. Updating processes can be studied with the list method of directed forgetting. METHODS: In the list method of directed forgetting task, subjects study two lists of items and, after study of list 1, are asked to either forget or remember the list for an upcoming memory test. Free testosterone level was quantified from saliva samples. Directed forgetting and saliva testosterone were evaluated in young men (aged between 18 and 28 years). RESULTS: Following a forget cue, recall of list-1 items was reduced and recall of list-2 items was enhanced. However, only recall of list-2 items was associated with free testosterone level. Following a forget cue, participants with low testosterone levels showed higher recall of list-2 items than participants with high testosterone levels. CONCLUSION: The selective association between testosterone level and list-2 recall is consistent with two-mechanism accounts of memory updating, where the forgetting effect is due to impaired retrieval and the enhancement effect to improved encoding. On the basis of this view, the present results indicate that low testosterone levels are associated with improved binding of the newly encoded memories to their context cue.


Memory, Episodic , Mental Recall/physiology , Testosterone/analysis , Adolescent , Adult , Humans , Male , Saliva/chemistry , Young Adult
16.
Front Hum Neurosci ; 9: 302, 2015.
Article En | MEDLINE | ID: mdl-26074804

Traveling waves have been well documented in the ongoing, and more recently also in the evoked EEG. In the present study we investigate what kind of physiological process might be responsible for inducing an evoked traveling wave. We used a semantic judgment task which already proved useful to study evoked traveling alpha waves that coincide with the appearance of the P1 component. We found that the P1 latency of the leading electrode is significantly correlated with prestimulus amplitude size and that this event is associated with a transient change in alpha frequency. We assume that cortical background excitability, as reflected by an increase in prestimulus amplitude, is responsible for the observed change in alpha frequency and the initiation of an evoked traveling trajectory.

17.
Front Hum Neurosci ; 9: 202, 2015.
Article En | MEDLINE | ID: mdl-25954179

Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN) activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret. Here we compared the BOLD-response of 18 participants with high (HMAs) and 18 participants with low mathematics anxiety (LMAs) matched for their mathematical performance to two numerical tasks (number comparison, number bisection). During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval.

18.
Brain Res ; 1595: 74-83, 2015 Jan 21.
Article En | MEDLINE | ID: mdl-25446456

Ovarian sex hormones modulate neuronal circuits not directly involved in reproductive functions. In the present study, we investigated whether endogenous fluctuations of estradiol and progesterone during the menstrual cycle are associated with early cortical processing stages in a cued spatial attention paradigm. EEG was monitored while young women responded to acoustically cued visual stimuli. Women with large mean amplitude of the event-related potential (ERP) (80-120 ms following visual stimuli) responded faster to visual stimuli. In luteal women, mean amplitude of the ERP as well as alpha amplitude, an indicator of attentional modulation, correlated positively with progesterone. Further, cerebral asymmetry in ERP amplitude in the alpha frequency band following target presentation was restricted to luteal women. Critically, early follicular women responded slower to right hemifield compared to left hemifield targets. In late follicular or luteal women, we did not detect a right hemifield disadvantage. Progesterone correlated negatively with RTs in luteal women. Therefore, whereas our behavioral data indicate a functional cerebral asymmetry in early follicular women, EEG recording reveal a physiological cerebral hemisphere asymmetry in the alpha frequency band in luteal women. We assume that a progesterone-associated enhancement in synchronization of synaptic activity in the alpha frequency band in luteal women improves early categorization of visual targets in a cued spatial attention paradigm.


Attention/physiology , Evoked Potentials, Visual/physiology , Menstrual Cycle/physiology , Progesterone/metabolism , Adult , Alpha Rhythm/physiology , Cues , Electroencephalography , Female , Functional Laterality , Humans , Photic Stimulation , Reaction Time/physiology , Salvia/metabolism , Young Adult
19.
Brain Res ; 1596: 108-15, 2015 Jan 30.
Article En | MEDLINE | ID: mdl-25446458

Effects of oral hormonal contraceptives (OC) on human brain structure and behavior have only recently become a focus of research. Two explorative reports observed larger regional gray matter (GM) volumes in OC users within the prefrontal cortex, ACC and fusiform gyri, as well as parahippocampal gyri, hippocampus and cerebellum. These studies did however not control for the androgenicity of the progestin compound of OC, did not take into consideration how long OC users had been on their OC, and did not control for age differences between the OC group and the naturally cycling group. We compared 20 naturally cycling women during their early follicular cycle phase to 18 users of OC containing androgenic progestins and 22 users of OC containing anti-androgenic progestins. When controlling for age, we found that in users of anti-androgenic progestins relative GM volumes within the bilateral fusiform gyri, fusiform face area (FFA), parahippocampal place area (PPA) and cerebellum, were significantly larger than in naturally cycling women, while in users of androgenic progestins, relative as well as absolute volumes within the bilateral middle and superior frontal gyri were significantly smaller compared to naturally cycling women. These morphological changes were related to performance in a face recognition task. Face recognition performance was significantly better in users of anti-androgenic progestins compared to the other groups and significantly related to absolute as well as relative GM volumes in the FFA and PPA. Total GM volume, as well as absolute GM volumes within the bilateral fusiform gyri, FFA, hippocampus, parahippocampus, PPA, middle frontal gyri and ACC were significantly larger, the longer the duration of OC use, particularly in users of androgenic progestins. Morphological differences between active and inactive pill phase were observed in users of androgenic progestins. These findings suggest differential effects of androgenic and anti-androgenic progestins on human brain structure.


Contraceptives, Oral, Hormonal/administration & dosage , Face , Frontal Lobe/anatomy & histology , Gray Matter/physiology , Pattern Recognition, Visual/physiology , Progestins/administration & dosage , Adult , Brain Mapping , Female , Humans , Photic Stimulation , Young Adult
20.
Neurobiol Learn Mem ; 116: 145-54, 2014 Dec.
Article En | MEDLINE | ID: mdl-25463649

Posttraumatic stress disorder (PTSD) can be conceptualized as a disorder of emotional memory showing strong (conditioned) responses to trauma reminders and intrusive memories among other symptoms. Women are at greater risk of developing PTSD than men. Recent studies have demonstrated an influence of ovarian steroid hormones in both fear conditioning and intrusive memory paradigms. However, although intrusive memories are considered non-extinguished emotional reactions to trauma reminders, none of the previous studies has investigated effects of ovarian hormones on fear conditioning mechanisms and intrusive memories in conjunction. This may have contributed to an overall inconsistent picture of the role of these hormones in emotional learning and memory. To remedy this, we exposed 37 healthy women with a natural menstrual cycle (during early follicular or luteal cycle phase) to a novel conditioned-intrusion paradigm designed to model real-life traumatic experiences. The paradigm included a differential fear conditioning procedure with short violent film clips as unconditioned stimuli. Intrusive memories about the film clips were assessed ambulatorily on subsequent days. Women with lower levels of estradiol displayed elevated differential conditioned skin conductance responding during fear extinction and showed stronger intrusive memories. The inverse relationship between estradiol and intrusive memories was at least partially accounted for by the conditioned responding observed during fear extinction. Progesterone levels were not associated with either fear acquisition/extinction or with intrusive memories. This suggests that lower levels of estradiol might promote stronger symptoms of PTSD through associative processes.


Conditioning, Classical/physiology , Estradiol/analysis , Extinction, Psychological/physiology , Fear/physiology , Memory/physiology , Acoustic Stimulation , Adolescent , Adult , Female , Humans , Menstrual Cycle/psychology , Progesterone/analysis , Saliva/chemistry , Young Adult
...