Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 81
1.
JMIR Form Res ; 8: e53206, 2024 May 20.
Article En | MEDLINE | ID: mdl-38767942

BACKGROUND: Primary care research networks can generate important information in the setting where most patients are seen and treated. However, this requires a suitable IT infrastructure (ITI), which the North Rhine-Westphalian general practice research network is looking to implement. OBJECTIVE: This mixed methods research study aims to evaluate (study 1) requirements for an ITI and (study 2) the usability of an IT solution already available on the market, the FallAkte Plus (FA+) system for the North Rhine-Westphalian general practice research network, which comprises 8 primary care university institutes in Germany's largest state. METHODS: In study 1, a survey was conducted among researchers from the institutes to identify the requirements for a suitable ITI. The questionnaire consisted of standardized questions with open-ended responses. In study 2, a mixed method approach combining a think-aloud approach and a quantitative survey was used to evaluate the usability and acceptance of the FA+ system among 3 user groups: researchers, general practitioners, and practice assistants. Respondents were asked to assess the usability with the validated system usability scale and to test a short questionnaire on vaccination management through FA+. RESULTS: In study 1, five of 8 institutes participated in the requirements survey. A total of 32 user requirements related primarily to study management were identified, including data entry, data storage, and user access management. In study 2, a total of 36 participants (24 researchers and 12 general practitioners or practice assistants) were surveyed in the mixed methods study of an already existing IT solution. The tutorial video and handouts explaining how to use the FA+ system were well received. Researchers, unlike practice personnel, were concerned about data security and data protection regarding the system's emergency feature, which enables access to all patient data. The median overall system usability scale rating was 60 (IQR 33.0-85.0), whereby practice personnel (median 82, IQR 58.0-94.0) assigned higher ratings than researchers (median 44, IQR 14.0-61.5). Users appreciated the option to integrate data from practices and other health care facilities. However, they voted against the use of the FA+ system due to a lack of support for various study formats. CONCLUSIONS: Usability assessments vary markedly by professional group and role. In its current stage of development, the FA+ system does not fully meet the requirements for a suitable ITI. Improvements in the user interface, performance, interoperability, security, and advanced features are necessary to make it more effective and user-friendly. Collaborating with end users and incorporating their feedback are crucial for the successful development of any practice network research ITI.

2.
Front Immunol ; 15: 1390137, 2024.
Article En | MEDLINE | ID: mdl-38807585

L-carnitine, available as feed additive, is essential for the beta-oxidation of free fatty acids in the mitochondrial matrix. It provides energy to immune cells and may positively impact the functionality of leukocytes during the acute phase response, a situation of high energy demand. To test this hypothesis, German Holstein cows were assigned to a control group (CON, n = 26) and an L-carnitine supplemented group (CAR, n = 27, rumen-protected L-carnitine product: 125 g/cow/d, corresponded to total L-carnitine intake: 25 g/cow/d, supplied with concentrate) and received an intravenous bolus injection of lipopolysaccharides (LPS, 0.5 µg/kg body weight, E. coli) on day 111 postpartum as a model of standardized systemic inflammation. Blood samples were collected from day 1 ante injectionem until day 14 post injectionem (pi), with frequent sampling through an indwelling venous catheter from 0.5 h pi to 12 h pi. All parameters of the white blood cell count responded significantly to LPS, while only a few parameters were affected by L-carnitine supplementation. The mean eosinophil count, as well as the percentage of basophils were significantly higher in CAR than in CON over time, which may be due to an increased membrane stability. However, phagocytosis and production of reactive oxygen species by leukocytes remained unchanged following L-carnitine supplementation. In conclusion, although supplementation with 25 g L-carnitine per cow and day resulted in increased proportions of specific leukocyte populations, it had only minor effects on the functional parameters studied in mid-lactating dairy cows during LPS-induced inflammation, and there was no evidence of direct improvement of immune functionality.


Carnitine , Dietary Supplements , Inflammation , Lactation , Lipopolysaccharides , Animals , Cattle , Carnitine/pharmacology , Carnitine/administration & dosage , Female , Inflammation/immunology , Leukocyte Count
3.
Arch Anim Nutr ; : 1-16, 2024 May 26.
Article En | MEDLINE | ID: mdl-38796745

Preserved feed from meadows contaminated with ragwort (Jacobaea vulgaris, Gaertn.) may expose livestock to pyrrolizidine alkaloids (PA). Dairy cows are considered to be very susceptible animals and a PA ingestion can lead to liver and further organ damages and even death. Due to the lack of data, the present study aimed to evaluate critical PA doses based on organ effects, with a special focus on liver lesions and on indicators of energy metabolism. Therefore, 16 dairy cows (n = 4 per group) were exposed to increasing PA doses (group: CONMolasses: <0.001 mg PA/kg body weight (BW)/day (d); PA1: 0.47 mg PA/kg BW/d; PA2: 0.95 mg PA/kg BW/d; PA3: 1.91 mg PA/kg BW/d) for 28 days. Constant dosing was ensured by a defined PA extract administered orally once daily. Histological examinations of the livers showed infiltration by immune cells, higher proportions of apoptotic cells and enlargement of hepatocyte nuclei in the highest exposed group. In addition, bile volume increased with PA dose, which may indicate a cholestasis. Despite the signs of incipient liver damage, liver lipid content and clinical chemical parameters related to energy metabolism, such as glucose, non-esterified fatty acids and ßhydroxybutyrate, remained unaffected. Fat depot masses were also not significantly altered over time, suggesting that PA exposure did not induce a wasting syndrome. The liver showed slight microscopic changes already at a dosage of 0.95 mg PA/kg BW/d. However, the short-term metabolic indicators of energy status, lipolysis and ketogenesis, glucose, NEFA and BHB, as well as changes in fat depot, which serves as a longer-term indicator of lipolysis, remained unaffected in all treatment groups in the chosen scenario. These findings suggest that despite histopathological and clinical-chemical evidence of PA-associated hepatocellular lesions, liver function was not compromised.

4.
Arch Anim Nutr ; 78(1): 78-94, 2024 Feb.
Article En | MEDLINE | ID: mdl-38511624

Farmgate balances are used as a tool for monitoring nutrient surpluses at farm level. In Germany, preparation of farmgate balances is legally mandatory and also requires data on chemical body composition, especially concentration of nitrogen (N) and phosphorus (P), of farm animals. It is well known that increased N and P efficiency results in lowered N and P excretions with the manure and therefore mitigates negative consequences of high N and P release into the environment (e.g. eutrophication of surface waters), especially in areas with high livestock density. In this context, feeding N- and P-reduced diets can be a strategy for increasing N and P efficiency in fattening pigs. To investigate the influence of N- and P-reduced diets on chemical body composition of barrows and to update current used data basis, 8 barrows were slaughtered after a balance trial and their bodies were subjected to full body analysis. During the balance trial, pigs received the control diet (CON) meeting common nutrient requirements or the N- and P-reduced diet (NPred) in a three-phased feeding regimen (n = 4/diet, 3 weeks/phase). Pigs were slaughtered with an average live weight (LW) of 123.3 ± 7.5 kg and carcasses were manually dissected in four fractions. Fractions were analysed for nutrient concentration. Furthermore, organs were weighed individually and blood serum was sampled during exsanguination. Serum samples were analysed for clinical-chemical traits. Chemical body composition did not significantly differ between NPred- and CON-fed pigs. N concentration was 23.3 ± 0.3 and 24.5 ± 1.0 g/kg, P concentration was 5.2 ± 0.1 and 5.5 ± 0.4 g/kg in the empty body of NPred- and CON-fed pigs (p = 0.073, 0.164). N and P retention between the experiment's start and slaughter did not differ between the feeding groups (p = 0.641, 0.240). Variables related to liver integrity, energy metabolism and electrolytes were similar between CON- and NPred-fed pigs. Traits related to protein metabolism showed significantly reduced concentrations of urea and albumin in NPred-fed pigs (p = 0.013, 0.025), but no hypoalbuminaemia. Results suggest that N- and P-reduced feeding does not significantly affect chemical body composition of contemporary barrows.


Animal Feed , Animal Nutritional Physiological Phenomena , Body Composition , Diet , Nitrogen , Sus scrofa , Animals , Nitrogen/metabolism , Diet/veterinary , Animal Feed/analysis , Male , Sus scrofa/physiology , Phosphorus, Dietary/metabolism , Phosphorus, Dietary/administration & dosage , Phosphorus/metabolism
5.
Arch Anim Nutr ; 77(6): 468-486, 2023 Dec.
Article En | MEDLINE | ID: mdl-38086826

The reduction of nitrogen (N) and phosphorus (P) in fattening pigs' diets is one possible approach to lower N and P excretion in livestock farming relative to N and P intake. Due to the implementation of the European Nitrates Directive and the consecutive amendments to the German fertiliser legislation since 2017, N- and P-reduced diets for fattening pigs are becoming more and more important and are increasingly used in practice. To investigate the effects of such diets on N and P balance and retention as well as on nutrient digestibility of contemporary fattening pigs, a balance experiment was performed with eight barrows (average live weight = 61.5 ± 2.1 kg) which were surgically fitted with a simple T-cannula at the terminal ileum. The pigs received a control diet meeting nutrient requirements (CON) and an N- and P-reduced diet (NPred) ad libitum (n = 4/diet) in a 3-phased feeding regimen (3 weeks/phase). In the last week of each phase, faeces and urine were collected quantitatively for 5 days followed by a 2 × 12 hours collection of ileal digesta. Daily feed intake, live weight gain and feed-to-gain ratio did not differ between CON and NPred. NPred-fed pigs consumed 10.5% (p = 0.006) and excreted 28.3% (p = 0.028) less N than CON-fed pigs. Phosphorus excretion was lowered by 15.1% in NPred-fed pigs (p = 0.012). N and P retention did not differ between CON and NPred, but were elevated in comparison to other studies. N and P efficiency, expressed as nutrient retention divided by nutrient intake, was higher in NPred - than CON-fed pigs (N: 68 vs 60%, P: 54.2 vs 49.3%). Apparent post-ileal digestibility coefficient (DCpost-ileal) and apparent total tract digestibility coefficient (DCtotal) of crude protein were higher in NPred - than CON-fed pigs (p < 0.013), but apparent precaecal digestibility coefficient (DCpc) of crude protein was unaffected by diet. DCpc, DCpost-ileal and DCtotal of P were similar for CON- and NPred-fed pigs. NPred-fed pigs showed an elevated DCpc and DCtotal of organic matter, N-free-extractives and starch compared to CON-fed pigs. DCpc of calcium was also higher in NPred-fed pigs. In conclusion, the results suggest that N- and P-reduced feeding of fattening pigs remains an effective strategy to lower the N and P release into the environment. Furthermore, results indicate that N- and P-reduced feeding leads to a higher N and P efficiency in contemporary fattening pigs.


Diet , Nitrogen , Swine , Animals , Diet/veterinary , Nitrogen/metabolism , Phosphorus , Digestion , Animal Feed/analysis , Nutrients
6.
Arch Anim Nutr ; 77(5): 363-384, 2023 Oct.
Article En | MEDLINE | ID: mdl-37842997

The increasing spread of ragworts is observed with concern. Ragworts like tansy ragwort (Jacobaea vulgaris Gaertn.) or marsh ragwort (J. aquatica) contain pyrrolizidine alkaloids (PA) which may induce hepatotoxic effects. Grazing animals usually avoid ragworts if their pasture management is appropriate. Preserved feed prepared from ragworts contaminated meadows may, however, lead to a significant exposure to PA. Previous studies on toxicity of PA for dairy cows revealed inconsistent results due to feeding ragwort plant material which was associated with heterogeneous PA exposure and thus failed to conclusively deduce critical PA doses. Therefore, the aim of the present study was to expose dairy cows (n = 4 per group) in a short-term scenario for 28 days with increasing PA doses (PA1: 0.47 mg PA/kg body weight (BW)/day (d); PA2: 0.95 mg PA/kg BW/d; PA3: 1.91 mg PA/kg BW/d) via oral administration by gavage of a defined PA-extract. While group PA3 was dosed with the PA-extract alone, groups PA2 and PA1 received PA-extracts blended in similar volumes with molasses to provide comparable amounts of sugar. Additionally, two control groups were treated either with water (CONWater) or with molasses (CONMolasses) to assess the effects of sugar without PA interference. While clinical traits including dry matter intake, milking performance, rectal body temperature, ruminal activity and body condition score (BCS) were not influenced by PA exposure, activities of enzymes indicative for liver damages, such as gamma-glutamyltransferase (GGT), aspartate aminotransferase (AST) and glutamate dehydrogenase (GLDH), increased significantly over time at an exposure of 1.91 mg total PA/kg BW/d.


Pyrrolizidine Alkaloids , Senecio , Tanacetum , Female , Cattle , Animals , Pyrrolizidine Alkaloids/toxicity , Diet/veterinary , Animal Feed/analysis , Water , Plant Extracts , Sugars
7.
PLoS One ; 18(6): e0286995, 2023.
Article En | MEDLINE | ID: mdl-37294795

Maternal exposure to various stimuli can influence pre- and postnatal development of the offspring. This potential has been discussed for glyphosate (GLY), active substance in some non-selective herbicides. Accordingly, present study investigated putative effects of GLY residues in rations on cows and their offspring. Dams received either GLY-contaminated (GLY groups) or control (CON groups) rations combined with low (LC groups) or high (HC groups) concentrate feed proportions (CFP) for 16 weeks during mid- and late lactation and early gestation (59±4 days at beginning of GLY exposure; mean±SE). During this feeding trial, average daily GLY exposures of dams were 1.2 (CONLC), 1.1 (CONHC), 112.5 (GLYLC) and 130.3 (GLYHC) µg/kg body weight/d. After a depletion period (107±4 days; mean±SE) and calving, blood samples of dams and their calves were collected (5-345 min after birth) before calves were fed colostrum and analyzed for hematological and clinical-chemical traits, redox parameters, functional properties of leukocytes and DNA damage in leukocytes. No evidence for malformations of newborn calves could be collected. At parturition, most analyzed blood parameters were not affected by dietary treatment of dams during gestation. Significant GLY effects were observed for some traits, e.g. blood non-esterified fatty acids (NEFA) in calves. These deviations of GLY groups from CON groups likely resulted from strong time-dependent responses of NEFA levels within the first 105 minutes after birth and before colostrum intake (Spearman´s rank correlation R = 0.76, p<0.001). Additionally, significant GLY effects did not result in differences in measures that were beyond normally observed ranges questioning a pathological relevance. In summary, no evidence for teratogenic or other clear effects of GLY or CFP on analyzed parameters of dams and their newborn calves could be collected under applied conditions. However, detailed studies including GLY exposure during late and complete gestation period would be needed to rule out teratogenic effects.


Diet , Fatty Acids, Nonesterified , Animals , Cattle , Female , Pregnancy , Animal Feed/analysis , Animals, Newborn , Blood Cells , Diet/veterinary , DNA Damage , Fatty Acids, Nonesterified/analysis , Milk/chemistry , Glyphosate
8.
Animals (Basel) ; 13(9)2023 Apr 28.
Article En | MEDLINE | ID: mdl-37174536

Glyphosate (GLY), the active substance in non-selective herbicides, is often found in ruminant feed. The present feeding study aimed to investigate the effects of GLY-contaminated rations and different concentrate feed proportions (CFP) on the health of fattening German Holstein bulls. Bulls were grouped by low (LC) or high (HC) CFP with (GLYLC, GLYHC) or without GLY-contaminations (CONLC, CONHC) in their rations. Intakes (dry matter, water) and body weight were documented continuously lasting over an average range from 392.2 ± 60.4 kg to 541.2 ± 67.4 kg (mean ± SD). Blood samples collected at the trial's beginning, and after 7 and 15 weeks, were analyzed for hematological and clinical-chemical traits, functional properties of leukocytes, redox parameters and DNA damage. The average GLY exposures of 128.6 (GLYHC), 213.7 (GLYLC), 1.3 (CONHC) and 2.0 µg/kg body weight/d (CONLC) did not lead to GLY effects for most of the assessed parameters relating to animal health and performance. CFP and time displayed marked influences on most of the experimental parameters such as higher dry matter intake and average daily gain in HC compared with the LC groups. GLY effects were rather weak. However, the observed interactive effects between GLY and CFP and/or time occurring in an inconsistent manner are likely not reproducible. Finally, all animals remained clinically inconspicuous, which brings into question the physiological relevance of putative GLY effects.

9.
Mycotoxin Res ; 39(3): 201-218, 2023 Aug.
Article En | MEDLINE | ID: mdl-37249806

Female pigs respond sensitive both to DON and ZEN with anorexia and endocrine disruption, respectively, when critical diet concentrations are exceeded. Therefore, the frequent co-contamination of feed by DON and ZEN requires their parallel inactivation. The additive ZenA hydrolyzes ZEN while SBS inactivates DON through sulfonation. Both supplements were simultaneously added (+, 2.5 g SBS and 100 U ZenA/kg) to a control diet (CON-, 0.04 mg DON and < 0.004 mg ZEN/kg; CON+, 0.03 mg DON and < 0.004 mg ZEN/kg) and a Fusarium toxin contaminated diet (FUS-, 2.57 mg DON and 0.24 mg ZEN/kg; FUS+, 2.04 mg DON and 0.24 mg ZEN/kg). The 4 diets were fed to 20 female weaned piglets each (6 kg initial body weight) for 35 days; the piglets were sacrificed thereafter for collecting samples. Supplements improved performance and modified metabolism and hematology independent of dietary DON contamination. The mechanisms behind these changes could not be clarified and require further consideration. SBS reduced DON concentration in feed by approximately 20% and to the same extent in blood plasma and urine suggesting that no further DON sulfonate formation occurred in the digestive tract before absorbing DON in the upper digestive tract or that additionally formed DON sulfonates escaped absorption. DON sulfonates were detected in feces suggesting that unabsorbed DON sulfonates reached feces and/or that unabsorbed DON was sulfonated in the hindgut. The observed reduction rate of 20% was evaluated to be insufficient for feeding practice. Galenic form of SBS added to dry feed needs to be improved to support the DON sulfonation in the proximal digestive tract.ZenA was active in the digestive tract as demonstrated by the presence of its hydrolyzed none-estrogenic reaction products hydrolyzed ZEN (HZEN) and decarboxylated and hydrolyzed ZEN (DHZEN) both in feces, systemic circulation, and urine of group FUS+ compared to group FUS-. The presence of these hydrolysis products was paralleled by a significant decrease in high-estrogenic ZEN concentrations which, in turn, was related to a decrease in relative weights of uteri and ovaries when compared to group FUS-. Thus, ZenA was proven to be effective; both in terms of biomarkers and biological effects.


Fusarium , Trichothecenes , Zearalenone , Animals , Female , Swine , Zearalenone/analysis , Hydrolases/metabolism , Trichothecenes/analysis , Animal Feed/analysis , Food Contamination , Fusarium/metabolism
10.
Front Immunol ; 13: 784046, 2022.
Article En | MEDLINE | ID: mdl-35370999

In early lactation, an energy deficit leading to a negative energy balance (NEB) is associated with increased susceptibility to disease and has been shown to be an important factor during transition in dairy cows. L-carnitine as a key factor in the mitochondrial transport of fatty acids and subsequently for ß-oxidation and energy release is known to modulate mitochondrial biogenesis and thus influence metabolism and immune system. In the current study, we characterized hematological changes around parturition and investigated the potential effects of dietary L-carnitine supplementation on immune cell functions. For this approach, dairy cows were assigned either to a control (CON, n = 30) or an L-carnitine group [CAR, n = 29, 25 g rumen-protected L-carnitine per cow and day (d)]. Blood samples were taken from d 42 ante partum (ap) until d 110 post-partum (pp), with special focus and frequent sampling from 0.5 to72 h post-calving to clarify the impact of L-carnitine supplementation on leukocyte count, formation of reactive oxygen species (ROS) in polymorphonuclear cells (PMN) and peripheral mononuclear cells (PBMC) and their phagocytosis activity. Blood cortisol concentration and the capacity of PBMC proliferation was also investigated. All populations of leukocytes were changed during the peripartal period, especially granulocytes showed a characteristic increase up to 4 h pp. L-carnitine supplementation resulted in increased levels of eosinophils which was particularly pronounced one day before to 4 h pp, indicating a possible enhanced support for tissue repair and recovery. Non-supplemented cows showed a higher phagocytic activity in PBMC as well as a higher phagocytic capacity of PMN during the most demanding period around parturition, which may relate to a decrease in plasma levels of non-esterified fatty acids reported previously. L-carnitine, on the other hand, led to an increased efficiency to form ROS in stimulated PMN. Finally, a short period around calving proved to be a sensitive period in which L-carnitine administration was effective.


Carnitine , Milk , Animals , Carnitine/pharmacology , Cattle , Dietary Supplements , Female , Leukocyte Count , Leukocytes, Mononuclear , Parturition/metabolism , Pregnancy , Reactive Oxygen Species
12.
Innate Immun ; 27(5): 388-408, 2021 07.
Article En | MEDLINE | ID: mdl-34338001

The sensitivity of pigs to deoxynivalenol (DON) might be increased by systemic inflammation (SI), which also has consequences for hepatic integrity. Liver lesions and a dys-regulated gene network might hamper hepatic handling and elimination of DON whereby the way of initiation of hepatic inflammation might play an additional role. First and second-pass exposure of the liver with LPS for triggering a SI was achieved by LPS infusion via pre- or post-hepatic venous route, respectively. Each infusion group was pre-conditioned either with a control diet (0.12 mg DON/kg diet) or with a DON-contaminated diet (4.59 mg DON/kg diet) for 4 wk. Liver transcriptome was evaluated at 195 min after starting infusions. DON exposure alone failed to modulate the mRNA expression significantly. However, pre- and post-hepatic LPS challenges prompted transcriptional responses in immune and metabolic levels. The mRNAs for B-cell lymphoma 2-like protein 11 as a key factor in apoptosis and IFN-γ released by T cells were clearly up-regulated in DON-fed group infused with LPS post-hepatically. On the other hand, mRNAs for nucleotide binding oligomerization domain containing 2, IFN-α and eukaryotic translation initiation factor 2α kinase 3 as ribosomal stress sensors were exclusively up-regulated in control pigs with pre-hepatic LPS infusion. These diverse effects were traced back to differences in TLR4 signalling.


Acute-Phase Reaction/genetics , Chemical and Drug Induced Liver Injury/genetics , Liver/physiology , Trichothecenes/toxicity , Acute-Phase Reaction/metabolism , Animal Feed , Animals , Chemical and Drug Induced Liver Injury/metabolism , Diet/adverse effects , Dietary Exposure , Food Contamination , Lipopolysaccharides/metabolism , Mycotoxins , Swine , Transcriptome
13.
Toxins (Basel) ; 13(8)2021 08 23.
Article En | MEDLINE | ID: mdl-34437459

Mycotoxin contaminated feed has been associated with colic of horses caused by intestinal disorders. Whether such disease conditions alter the intestinal toxin metabolism and transfer across a compromised mucosal barrier is unknown. A screening approach was used to relate blood residue levels of DON, ZEN and their metabolites to the status of the horses (sick vs. healthy). A total of 55 clinically healthy horses from 6 different farms with varying feeding background served as control for sick horses (N = 102) hospitalized due to colic. ZEN, alpha-zearalenol (ZEL), beta-ZEL and DON were detectable in peripheral blood as indicators for the inner exposure with significant farm effects for alpha- and beta-ZEL. However, the levels in sick horses were similar to all farms. Moreover, the proportion of beta-ZEL of all detected ZEN metabolites as an indicator for the degree of metabolism of ZEN was not different for sick horses but differed amongst the control farms. Although the incidence of DON in blood was generally low and not significantly different amongst healthy and sick horses, the positive samples were nearly exclusively found in sick horses suggesting either a higher toxin transfer, an association of DON with the development of colic or a different feeding background.


Colic/chemically induced , Trichothecenes/blood , Trichothecenes/metabolism , Trichothecenes/toxicity , Zearalenone/blood , Zearalenone/metabolism , Zearalenone/toxicity , Animal Feed/analysis , Animal Feed/microbiology , Animals , Blood Chemical Analysis , Horses , Mycotoxins/blood , Mycotoxins/metabolism , Mycotoxins/toxicity
14.
Animals (Basel) ; 11(6)2021 Jun 15.
Article En | MEDLINE | ID: mdl-34203718

Methane (CH4) from ruminal feed degradation is a major pollutant from ruminant livestock, which calls for mitigation strategies. The purpose of the present 4 × 2 factorial arrangement was to investigate the dose-response relationships between four doses of the CH4 inhibitor 3-nitrooxypropanol (3-NOP) and potential synergistic effects with low (LC) or high (HC) concentrate feed proportions (CFP) on CH4 reduction as both mitigation approaches differ in their mode of action (direct 3-NOP vs. indirect CFP effects). Diet substrates and 3-NOP were incubated in a rumen simulation technique to measure the concentration and production of volatile fatty acids (VFA), fermentation gases as well as substrate disappearance. Negative side effects on fermentation regarding total VFA and gas production as well as nutrient degradability were observed for neither CFP nor 3-NOP. CH4 production decreased from 10% up to 97% in a dose-dependent manner with increasing 3-NOP inclusion rate (dose: p < 0.001) but irrespective of CFP (CFP × dose: p = 0.094). Hydrogen gas accumulated correspondingly with increased 3-NOP dose (dose: p < 0.001). In vitro pH (p = 0.019) and redox potential (p = 0.066) varied by CFP, whereas the latter fluctuated with 3-NOP dose (p = 0.01). Acetate and iso-butyrate (mol %) decreased with 3-NOP dose, whereas iso-valerate increased (dose: p < 0.001). Propionate and valerate varied inconsistently due to 3-NOP supplementation. The feed additive 3-NOP was proven to be a dose-dependent yet effective CH4 inhibitor under conditions in vitro. The observed lack of additivity of increased CFP on the CH4 inhibition potential of 3-NOP needs to be verified in future research testing further diet types both in vitro and in vivo.

15.
PLoS One ; 16(2): e0246679, 2021.
Article En | MEDLINE | ID: mdl-33577576

Glyphosate (GLY) is worldwide one of the most used active substances in non-selective herbicides. Although livestock might be orally exposed via GLY-contaminated feedstuffs, not much is known about possible hepatotoxic effects of GLY. As hepatic xenobiotic and nutrient metabolism are interlinked, toxic effects of GLY residues might be influenced by hepatic nutrient supply. Therefore, a feeding trial with lactating dairy cows was conducted to investigate effects of GLY-contaminated feedstuffs and different concentrate feed proportions (CFP) in the diets as tool for varying nutrient supply to the liver. For this, 61 German Holstein cows (207 ± 49 days in milk; mean ± standard deviation) were either fed a GLY-contaminated total mixed ration (TMR, GLY groups, mean GLY intake 122.7 µg/kg body weight/day) or control TMR (CON groups, mean GLY intake 1.2 µg/kg body weight/day) for 16 weeks. Additionally, both groups were further split into subgroups fed a lower (LC, 30% on dry matter basis) or higher (HC, 60% on dry matter basis) CFP resulting in groups CONHC (n = 16), CONLC (n = 16), GLYHC (n = 15), GLYLC (n = 14). Blood parameters aspartate aminotransferase, γ-glutamyltransferase, glutamate dehydrogenase, cholesterol, triglyceride, total protein, calcium, phosphorus, acetic acid and urea and histopathological evaluation were not influenced by GLY, whereas all mentioned parameters were at least affected by time, CFP or an interactive manner between time and CFP. Total bilirubin blood concentration was significantly influenced by an interaction between GLY and CFP with temporarily elevated concentrations in GLYHC, whereas the biological relevance remained unclear. Gene expression analysis indicated 167 CFP-responsive genes, while seven genes showed altered expression in GLY groups compared to CON groups. Since expression changes of GLY-responsive genes were low and liver-related blood parameters changed either not at all or only slightly, the tested GLY formulation was considered to have no toxic effects on the liver of dairy cows.


Animal Feed/analysis , Dairying , Gene Expression Regulation , Glycine/analogs & derivatives , Liver/metabolism , Liver/pathology , Animals , Cattle , Gene Expression Regulation/drug effects , Glycine/toxicity , Liver/drug effects , Reproducibility of Results , Transcriptome/drug effects , Transcriptome/genetics , Glyphosate
16.
Animals (Basel) ; 11(1)2021 Jan 10.
Article En | MEDLINE | ID: mdl-33435209

l-carnitine plays an important role in energy metabolism through supporting the transport of activated fatty acids to the subcellular site of ß-oxidation. An acute phase reaction (APR) is known as an energy consuming process. Lipopolysaccharides (LPS) are often used in animal models to study intervention measures during innate immune responses such as APR. Thus, the aim of the study was to investigate the effects of dietary l-carnitine supplementation during an LPS-induced APR in mid-lactating German Holstein cows. Animals were assigned to a control (CON, n = 26) or l-carnitine group (CAR, n = 27, 25 g rumen-protected l-carnitine/cow/d) and received an intravenous injection of LPS (0.5 µg/kg body weight) at day 111 post-partum. Blood samples were collected from day 1 pre-injection until day 14 post-injection (pi). From 0.5 h pi until 72 h pi blood samplings and clinical examinations were performed in short intervals. Clinical signs of the APR were not altered in group CAR except rumen motility which increased at a lower level compared to the CON group after a period of atonia. Group CAR maintained a higher insulin level compared to group CON even up to 72 h pi which might support glucose utilization following an APR.

17.
Animals (Basel) ; 10(12)2020 Nov 30.
Article En | MEDLINE | ID: mdl-33266165

The present study aimed at evaluating the influences of different concentrate feed proportions in the ration offered to dairy cows post partum with different body condition scores (BCS) before calving. Therefore, 60 pluriparous cows were divided 42 days before expected calving into two groups with a higher or an adequate BCS. After calving, both groups were further subdivided into a group fed a ration with either a low concentrate feed proportion (C, 35% at dry matter basis) or a high (60% at dry matter basis) one. It was hypothesized that different BCS would lead to different reactions concerning varying concentrate feed proportions. Isolated BCS effects were detected in the white blood profile only before calving. Neither low nor high concentrate feed proportions affected hematological, blood immune cell phenotypes and inflammatory markers consistently irrespective of BCS group. It was concluded, that the assessed BCS span covered a range in which the capability of cows to cope with different dietary post partum energy supply remained unchanged.

18.
Mycotoxin Res ; 36(4): 429-442, 2020 Nov.
Article En | MEDLINE | ID: mdl-32902833

The main objective of this study was to evaluate the effects of sodium sulfite (SoS) treatment of maize and its impact on the porcine immune system in the presence of an LPS-induced systemic inflammation. Control maize (CON) and Fusarium-toxin contaminated maize (FUS) were wet-preserved (20% moisture) for 79 days with (+) or without (-) SoS and then included at 10% in a diet, resulting in four experimental groups: CON-, CON+, FUS-, and FUS+ with deoxynivalenol (DON) concentrations of 0.09, 0.05, 5.36, and 0.83 mg DON/kg feed, respectively. After 42-day feeding trial (weaned barrows, n = 20/group), ten pigs per group were challenged intraperitoneally with either 7.5 µg LPS/kg BW or placebo (0.9% NaCl), observed for 2 h, and then sacrificed. Blood, mesenteric lymph nodes, and spleen were collected for phenotyping of different T cell subsets, B cells, and monocytes. Phagocytic activity and intracellular formation of reactive oxygen species (ROS) were analyzed in both polymorphonuclear cells (PMN) and peripheral blood mononuclear cells (PBMC) using flow cytometry. Our results revealed that the impact of DON was more notable on CD3+CD4+CD8+ T cells in lymphoid tissues rather than in blood T cells. In contrast, SoS treatment of maize altered leukocyte subpopulations in blood, e.g., reduced the percentage and fluorescence signal of CD8high T cells. Interestingly, SoS treatment reduced the amount of free radicals in basal ROS-producing PMNs only in LPS-challenged animals, suggesting a decrease in basal cellular ROS production (pSoS*LPS = 0.022).


Animal Feed/microbiology , Decontamination/methods , Food Contamination/prevention & control , Fusarium , Sulfites/pharmacology , Zea mays/microbiology , Animals , B-Lymphocytes/immunology , Leukocytes, Mononuclear/immunology , Lipopolysaccharides , Male , Mycotoxins , Phagocytosis , Reactive Oxygen Species/analysis , Swine/immunology , T-Lymphocyte Subsets/immunology
19.
Innate Immun ; 26(8): 716-732, 2020 11.
Article En | MEDLINE | ID: mdl-32703050

The sensitivity of pigs to deoxynivalenol (DON) might be influenced by systemic inflammation (SI) which impacts liver. Besides following acute-phase proteins, our aim was to investigate both the hepatic fractional albumin (ALB) synthesis rate (FSR) and the ALB concentration as indicators of ALB metabolism in presence and absence of SI induced by LPS via pre- or post-hepatic venous route. Each infusion group was pre-conditioned either with a control diet (CON, 0.12 mg DON/kg diet) or with a DON-contaminated diet (DON, 4.59 mg DON/kg diet) for 4 wk. A depression of ALB FSR was observed 195 min after LPS challenge, independent of feeding group or LPS application route, which was not paralleled by a down-regulated ALB mRNA expression but by a reduced availability of free cysteine. The drop in ALB FSR only partly explained the plasma ALB concentrations which were more depressed in the DON-pre-exposed groups, suggesting that ALB levels are influenced by further mechanisms. The abundances of haptoglobin, C-reactive protein, serum amyloid A, pig major acute-phase protein, fibrinogen and LPS-binding protein mRNA were up-regulated upon LPS stimulation but not accompanied by increases in the plasma concentrations of these proteins, pointing at an imbalance between synthesis and consumption.


Acute-Phase Reaction/metabolism , Albumins/metabolism , Inflammation/metabolism , Liver/metabolism , Mycotoxins/administration & dosage , Trichothecenes/administration & dosage , Administration, Oral , Animal Feed , Animals , C-Reactive Protein/metabolism , Dietary Supplements , Haptoglobins/metabolism , Lipopolysaccharides/immunology , Mycotoxins/adverse effects , Serum Amyloid A Protein/metabolism , Swine , Trichothecenes/adverse effects
20.
Animals (Basel) ; 10(2)2020 Feb 21.
Article En | MEDLINE | ID: mdl-32098123

Dairy cows are metabolically challenged during the transition period. Furthermore, the process of parturition represents an energy-consuming process. The degree of negative energy balance and recovery from calving also depends on the efficiency of mitochondrial energy generation. At this point, L-carnitine plays an important role for the transfer of fatty acids to the site of their mitochondrial utilisation. A control (n = 30) and an L-carnitine group (n = 29, 25 g rumen-protected L-carnitine per cow and day) were created and blood samples were taken from day 42 ante partum (ap) until day 110 post-partum (pp) to clarify the impact of L-carnitine supplementation on dairy cows, especially during the transition period and early puerperium. Blood and clinical parameters were recorded in high resolution from 0.5 h to 72 h pp. L-carnitine-supplemented cows had higher amounts of milk fat in early lactation and higher triacylglyceride concentrations in plasma ap, indicating increased efficiency of fat oxidation. However, neither recovery from calving nor energy balance and lipomobilisation were influenced by L-carnitine.

...