Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1280794, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046609

RESUMEN

Introduction: In light of upcoming climate change, there is an urgent requirement for tree improvement regarding adaptability to drought-caused stress and the development of quick and reliable screening methodologies for genotypes' drought tolerance. White poplar is, despite its high adaptability, considered to be an endangered tree species in Serbia, which gives it special importance in the preservation and improvement of biodiversity of riparian ecosystems. The main goal of this research was to evaluate the tolerance of five white poplar clones to the presence of polyethylene glycol (PEG 6000 molecular weight 6000) (different concentrations (e.g. 0 g/L, 1 g/L, 10 g/L, 20 g/L, and 50 g/L) in Aspen Culture Medium (ACM). Methods: The tolerance of the clones was evaluated by using morphological parameters (shoot fresh and dry weight, root fresh and dry weight), photosynthetic pigments (contents of chlorophyll a, chlorophyll b, carotenoids, and chlorophyll a+b), and biochemical parameters (total phenolic content, total flavonoid content, ferric reducing antioxidant power, antioxidant activities (DPPH activity and ABTS assay), free proline content and glycine betaine content. Results and Discussion: The values of morphological and photosynthetic pigments declined with an increase in the concentration of PEG 6000. At a concentration of 50 g/L, the content of shoot fresh mass decreased by 41%, the content of Chl a by 68%, Chl b by 65%, and Car by 76% compared to the control. Also, at the same medium, there was an increase in the content of total phenols, accumulation of proline, the content of glycine betaine as well as in antioxidant activity. Based on the obtained results, it can be assumed that more drought-tolerant clones are characterized by high values for biomass, high content of photosynthetic pigments, and high content of proline and glycine betaine in conditions similar to drought in vitro. Clone L-80 showed better results in most of the tested parameters, especially compared to the reference clone Villafranca.

2.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108671

RESUMEN

The drought sensitivity of the pedunculate oak (Quercus robur L.) poses a threat to its survival in light of climate change. Mycorrhizal fungi, which orchestrate biogeochemical cycles and particularly have an impact on the plant's defense mechanisms and metabolism of carbon, nitrogen, and phosphorus, are among the microbes that play a significant role in the mitigation of the effects of climate change on trees. The study's main objectives were to determine whether ectomycorrhizal (ECM) fungi alleviate the effects of drought stress in pedunculate oak and to investigate their priming properties. The effects of two levels of drought (mild and severe, corresponding to 60% and 30% of field capacity, respectively) on the biochemical response of pedunculate oak were examined in the presence and absence of ectomycorrhizal fungi. To examine whether the ectomycorrhizal fungi modulate the drought tolerance of pedunculate oak, levels of plant hormones and polyamines were quantified using UPLC-TQS and HPLC-FD techniques in addition to gas exchange measurements and the main osmolyte amounts (glycine betaine-GB and proline-PRO) which were determined spectrophotometrically. Droughts increased the accumulation of osmolytes, such as proline and glycine betaine, as well as higher polyamines (spermidine and spermine) levels and decreased putrescine levels in both, mycorrhized and non-mycorrhized oak seedlings. In addition to amplifying the response of oak to severe drought in terms of inducible proline and abscisic acid (ABA) levels, inoculation with ECM fungi significantly increased the constitutive levels of glycine betaine, spermine, and spermidine regardless of drought stress. This study found that compared to non-mycorrhized oak seedlings, unstressed ECM-inoculated oak seedlings had higher levels of salicylic (SA) and abscisic acid (ABA) but not jasmonic acid (JA), indicating a priming mechanism of ECM is conveyed via these plant hormones. According to a PCA analysis, the effect of drought was linked to the variability of parameters along the PC1 axe, such as osmolytes PRO, GB, polyamines, and plant hormones such as JA, JA-Ile, SAG, and SGE, whereas mycorrhization was more closely associated with the parameters gathered around the PC2 axe (SA, ODPA, ABA, and E). These findings highlight the beneficial function of the ectomycorrhizal fungi, in particular Scleroderma citrinum, in reducing the effects of drought stress in pedunculate oak.


Asunto(s)
Micorrizas , Quercus , Micorrizas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Quercus/metabolismo , Resistencia a la Sequía , Ácido Abscísico/metabolismo , Betaína/metabolismo , Poliaminas/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Sequías , Prolina/metabolismo
3.
Sci Total Environ ; 800: 149536, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34392225

RESUMEN

Associations of pedunculate oak (Quercus robur L.) radial growth with satellite-based soil moisture (SM) during the intensive tree growth period over a 30-year time span (1980-2010) were analyzed. This study included tree-ring width (TRW) chronologies from 22 stands located in four southeastern (SE) European countries (Slovenia, Croatia, Serbia and Bulgaria), which were grouped into three wetness groups (WGs): dry (<650 mm), moderate (650-750 mm), and wet (>750 mm), following the annual sum of precipitation. High correlation strengths during the intensive growth period-late spring and early summer months (April to June) was noted, which was opposite to the trend in late summer months. Variations in detrended TRW (TRWi) sensitivity to SM were also observed among the WGs. Specifically, the TRWi chronologies from the dry and wet WGs provided a greater number of significant correlations (p < 0.01) than trees from the moderate WG did. In wetter stands, TRWi correlated more negatively in the wettest (spring) months, while the correlation was weaker in summer months; these trends were opposite to those of trees growing in drier conditions that had the strongest responses to SM. A generalized additive mixed model (GAMM) based on 38 variables indicated that the fit for SM and radial growth was as strong as the fits for other traditionally measured parameters (temperature, precipitation, and river water level) and calculated drought indices (standardized precipitation index and the Ellenberg index) and TRW. Additionally, radial growth chronologies from drier sites had stronger fits with surrounding environmental factors. In conclusion, our findings suggest that SM can potentially be used as a reliable remote sensing indicator of the soil wetness in oak forests, which affects tree productivity and radial growth patterns and provides a new opportunity in dendrochronology research on larger scales.


Asunto(s)
Quercus , Clima , Sequías , Suelo , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA