Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
medRxiv ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39228730

RESUMEN

Background: Mitochondria-driven oxidative/redox stress and inflammation play a major role in chronic kidney disease (CKD) pathophysiology. Compounds targeting mitochondrial metabolism may improve mitochondrial function, inflammation, and redox stress; however, there is limited evidence of their efficacy in CKD. Methods: We conducted a randomized, double-blind, placebo-controlled crossover trial comparing the effects of 1200 mg/day of coenzyme Q10 (CoQ10) or 1000 mg/day of nicotinamide riboside (NR) supplementation to placebo in 25 people with moderate-to-severe CKD (eGFR <60mL/min/1.73 m2). We assessed changes in the blood transcriptome using 3'-Tag-Seq gene expression profiling and changes in pre-specified secondary outcomes of inflammatory and oxidative stress biomarkers. For a subsample of participants (n=14), we assessed lymphocyte and monocyte bioenergetics using an extracellular flux analyzer. Results: The (mean±SD) age, eGFR, and BMI of the participants were 61±11 years, 37±9 mL/min/1.73m2, and 28±5 kg/m2 respectively. Of the participants, 16% had diabetes and 40% were female. Compared to placebo, NR-mediated transcriptomic changes were enriched in gene ontology (GO) terms associated with carbohydrate/lipid metabolism and immune signaling while, CoQ10 changes were enriched in immune/stress response and lipid metabolism GO terms. NR increased plasma IL-2 (estimated difference, 0.32, 95% CI of 0.14 to 0.49 pg/mL), and CoQ10 decreased both IL-13 (estimated difference, -0.12, 95% CI of -0.24 to -0.01 pg/mL) and CRP (estimated difference, -0.11, 95% CI of -0.22 to 0.00 mg/dL) compared to placebo. Both NR and CoQ10 reduced 5 series F2-Isoprostanes (estimated difference, -0.16 and -0.11 pg/mL, respectively; P<0.05 for both). NR, but not CoQ10, increased the bioenergetic health index (BHI) (estimated difference, 0.29, 95% CI of 0.06 to 0.53) and spare respiratory capacity (estimated difference, 3.52, 95% CI of 0.04 to 7 pmol/min/10,000 cells) in monocytes. Conclusion: Six weeks of NR and CoQ10 improved in oxidative stress, inflammation, and cell bioenergetics in persons with moderate to severe CKD.

2.
medRxiv ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38946975

RESUMEN

Background: Clonal hematopoiesis of indeterminate potential (CHIP) is a common inflammatory condition of aging that causes myriad end-organ damage. We have recently shown associations for CHIP with acute kidney injury and with kidney function decline in the general population, with stronger associations for CHIP driven by mutations in genes other than DNMT3A (non- DNMT3A CHIP). Longitudinal kidney function endpoints in individuals with pre-existing chronic kidney disease (CKD) and CHIP have been examined in two previous studies, which reported conflicting findings and were limited by small sample sizes. Methods: In this study, we examined the prospective associations between CHIP and CKD progression events in four cohorts of CKD patients (total N = 5,772). The primary outcome was a composite of 50% kidney function decline or kidney failure. The slope of eGFR decline was examined as a secondary outcome. Mendelian randomization techniques were then used to investigate potential causal effects of CHIP on eGFR decline. Finally, kidney function was assessed in adenine-fed CKD model mice having received a bone marrow transplant recapitulating Tet2 -CHIP compared to controls transplanted wild-type bone marrow. Results: Across all cohorts, the average age was 66.4 years, the average baseline eGFR was 42.6 ml/min/1.73m 2 , and 24% had CHIP. Upon meta-analysis, non- DNMT3A CHIP was associated with a 59% higher relative risk of incident CKD progression (HR 1.59, 95% CI: 1.02-2.47). This association was more pronounced among individuals with diabetes (HR 1.29, 95% CI: 1.03-1.62) and with baseline eGFR ≥ 30 ml/min/1.73m (HR 1.80, 95% CI: 1.11-2.90). Additionally, the annualized slope of eGFR decline was steeper among non- DNMT3A CHIP carriers, relative to non-carriers (ß -0.61 ± 0.31 ml/min/1.73m 2 , p = 0.04). Mendelian randomization analyses suggested a causal role for CHIP in eGFR decline among individuals with diabetes. In a dietary adenine mouse model of CKD, Tet2 -CHIP was associated with lower GFR as well as greater kidney inflammation, tubular injury, and tubulointerstitial fibrosis. Conclusion: Non- DNMT3A CHIP is a potentially targetable novel risk factor for CKD progression.

3.
Res Sq ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39011119

RESUMEN

Purpose: Previous work has identified two AKI sub-phenotypes (SP1 and SP2) characterized by differences in inflammation and endothelial dysfunction. Here we identify these sub-phenotypes using biospecimens collected in the emergency department and test for differential response to restrictive versus liberal fluid strategy in sepsis-induced hypotension in the CLOVERS trial. Methods: We applied a previously validated 3-biomarker model using plasma angiopietin-1 and 2, and soluble tumor necrosis factor receptor-1 to classify sub-phenotypes in patients with kidney dysfunction (AKI or end-stage kidney disease [ESKD]). We also compared a de novo latent class analysis (LCA) to the 3-biomarker based sub-phenotypes. Kaplan-Meier estimates were used to test for differences in outcomes and sub-phenotype by treatment interaction. Results: Among 1289 patients, 846 had kidney dysfunction on enrollment and the 3-variable prediction model identified 605 as SP1 and 241 as SP2. The optimal LCA model identified two sub-phenotypes with high correlation with the 3-biomarker model (Cohen's Kappa 0.8). The risk of 28 and 90-day mortality was greater in SP2 relative to SP1 independent of AKI stage and SOFA scores. Patients with SP2, characterized by more severe endothelial injury and inflammation, had a reduction in 28-day mortality with a restrictive fluid strategy versus a liberal fluid strategy (26% vs 41%), while patients with SP1 had no difference in 28-day mortality (10% vs 11%) (p-value-for-interaction = 0.03). Conclusion: Sub-phenotypes can be identified in the emergency department that respond differently to fluid strategy in sepsis. Identification of these sub-phenotypes could inform a precision-guided therapeutic approach for patients with sepsis-induced hypotension and kidney injury.

4.
Crit Care Explor ; 6(7): e1109, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38922318

RESUMEN

IMPORTANCE: COVID-19 may injure the kidney tubules via activation of inflammatory host responses and/or direct viral infiltration. Most studies of kidney injury in COVID-19 lacked contemporaneous controls or measured kidney biomarkers at a single time point. OBJECTIVES: To better understand mechanisms of acute kidney injury in COVID-19, we compared kidney outcomes and trajectories of tubular injury, viability, and function in prospectively enrolled critically ill adults with and without COVID-19. DESIGN, SETTING, AND PARTICIPANTS: The COVID-19 Host Response and Outcomes study prospectively enrolled patients admitted to ICUs in Washington State with symptoms of lower respiratory tract infection, determining COVID-19 status by nucleic acid amplification on arrival. MAIN OUTCOMES AND MEASURES: We evaluated major adverse kidney events (MAKE) defined as a doubling of serum creatinine, kidney replacement therapy, or death, in 330 patients after inverse probability weighting. In the 181 patients with available biosamples, we determined trajectories of urine kidney injury molecule-1 (KIM-1) and epithelial growth factor (EGF), and urine:plasma ratios of endogenous markers of tubular secretory clearance. RESULTS: At ICU admission, the mean age was 55 ± 16 years; 45% required mechanical ventilation; and the mean serum creatinine concentration was 1.1 mg/dL. COVID-19 was associated with a 70% greater occurrence of MAKE (relative risk 1.70; 95% CI, 1.05-2.74) and a 741% greater occurrence of KRT (relative risk 7.41; 95% CI, 1.69-32.41). The biomarker cohort had a median of three follow-up measurements. Urine EGF, secretory clearance ratios, and estimated glomerular filtration rate (eGFR) increased over time in the COVID-19 negative group but remained unchanged in the COVID-19 positive group. In contrast, urine KIM-1 concentrations did not significantly change over the course of the study in either group. CONCLUSIONS: Among critically ill adults, COVID-19 is associated with a more protracted course of proximal tubular dysfunction and reduced eGFR despite similar degrees of kidney injury.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Enfermedad Crítica , Receptor Celular 1 del Virus de la Hepatitis A , Humanos , COVID-19/fisiopatología , Persona de Mediana Edad , Masculino , Lesión Renal Aguda/etiología , Lesión Renal Aguda/virología , Femenino , Estudios Prospectivos , Anciano , Receptor Celular 1 del Virus de la Hepatitis A/análisis , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , SARS-CoV-2 , Adulto , Biomarcadores/sangre , Biomarcadores/orina , Túbulos Renales/patología , Túbulos Renales/fisiopatología , Creatinina/sangre , Creatinina/orina , Unidades de Cuidados Intensivos , Washingtón/epidemiología , Factor de Crecimiento Epidérmico/sangre , Factor de Crecimiento Epidérmico/orina , Terapia de Reemplazo Renal
5.
Osteoporos Int ; 35(9): 1595-1604, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38913124

RESUMEN

Retinopathy and albuminuria are associated with hip fracture risk. We investigated whether these disorders and endothelial dysfunction (which underlies microvascular diseases) were associated with low trabecular bone density. No significant associations were found, suggesting that microvascular diseases are not related to fracture risk through low trabecular bone density. PURPOSE: Microvascular diseases of the eye, kidney, and brain are associated with endothelial dysfunction and increased hip fracture risk. To explore the basis for higher hip fracture risk, we comprehensively examined whether markers of microvascular disease and/or endothelial dysfunction are related to trabecular bone mineral density (BMD), a proximate risk factor for osteoporotic fractures. METHODS: Among 6814 participants in the Multi-Ethnic Study of Atherosclerosis study (MESA), we derived thoracic vertebral trabecular BMD from computed tomography of the chest and measured urine albumin to creatinine ratios (UACR), retinal arteriolar and venular widths, flow mediated dilation (FMD) of the brachial artery after 5 min of ischemia; and levels of five soluble endothelial adhesion markers (ICAM-1, VCAM-1, L-selectin, P-selectin, and E-selectin). Linear regression models were used to examine the association of trabecular BMD with markers of microvascular disease and with markers of endothelial dysfunction. RESULTS: We observed no significant associations of UACR, retinal arteriolar or venular widths, or FMD with BMD. We also observed no statistically significant association of spine trabecular BMD with levels of endothelial adhesion markers. Men and women had largely similar results. CONCLUSION: We conclude that there is little evidence to connect thoracic spine trabecular BMD to microvascular disorders or to endothelial dysfunction among multi-ethnic middle-aged and older adults. Other factors beyond trabecular BMD (e.g., bone quality or predisposition to falling) may be responsible for the associations of microvascular disease with osteoporotic fractures.


Asunto(s)
Albuminuria , Densidad Ósea , Hueso Esponjoso , Endotelio Vascular , Vértebras Torácicas , Humanos , Femenino , Masculino , Densidad Ósea/fisiología , Anciano , Persona de Mediana Edad , Endotelio Vascular/fisiopatología , Hueso Esponjoso/fisiopatología , Hueso Esponjoso/diagnóstico por imagen , Albuminuria/fisiopatología , Vértebras Torácicas/fisiopatología , Vértebras Torácicas/diagnóstico por imagen , Anciano de 80 o más Años , Fracturas Osteoporóticas/fisiopatología , Fracturas Osteoporóticas/etiología , Tomografía Computarizada por Rayos X/métodos , Biomarcadores/sangre , Osteoporosis/fisiopatología , Osteoporosis/etnología , Enfermedades de la Retina/fisiopatología , Enfermedades de la Retina/etiología , Enfermedades Vasculares/fisiopatología
6.
J Bone Miner Res ; 39(4): 433-442, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38477777

RESUMEN

Fracture risk is high in chronic kidney disease (CKD) and underlying pathophysiology and risk factors may differ from the general population. In a cohort study of 3939 participants in the chronic renal insufficiency cohort (CRIC), we used Cox regression to test associations of putative risk factors with the composite of first hip or vertebral fracture assessed using hospital discharge codes. Mean age was 58 years, 45% were female, 42% were Black, and 13% were Hispanic. There were 82 hip and 24 vertebral fractures over a mean (SD) 11.1 (4.8) years (2.4 events per 1000 person-years [95% CI: 2.0, 2.9]). Measured at baseline, diabetes, lower body mass index (BMI), steroid use, proteinuria, and elevated parathyroid hormone (PTH) were each associated with fracture risk after adjusting for covariates. Lower time-updated estimated glomerular filtration rate (eGFR) was associated with fractures (HR 1.20 per 10 mL/min/1.73m2 lower eGFR; 95% CI: 1.04, 1.38) as were lower time-updated serum calcium and bicarbonate concentrations. Among time-updated categories of kidney function, hazard ratios (95% CI) for incident fracture were 4.53 (1.77, 11.60) for kidney failure treated with dialysis and 2.48 (0.86, 7.14) for post-kidney transplantation, compared with eGFR ≥60. Proton pump inhibitor use, dietary calcium intake, measures of vitamin D status, serum phosphate, urine calcium and phosphate, and plasma fibroblast growth factor-23 were not associated with fracture risk. In conclusion, lower eGFR in CKD is associated with higher fracture risk, which was highest in kidney failure. Diabetes, lower BMI, steroid use, proteinuria, higher serum concentrations of PTH, and lower calcium and bicarbonate concentrations were associated with fractures and may be modifiable risk factors.


People with chronic kidney disease are at high risk of fractures. Our research assessed the relationship between several patient characteristics and the risk of fractures in 3939 patients with chronic kidney disease. We found that the following characteristics were associated with a higher risk of a hip or spine fracture: having diabetes, lower body mass index, use of steroid-containing medications, lower kidney filtration rate ("eGFR"), higher amounts of protein spilled in the urine, lower calcium and bicarbonate levels, and higher parathyroid hormone levels. Future studies should assess if improving these characteristics decreases the risk of fractures in patients with chronic kidney disease.


Asunto(s)
Fracturas de Cadera , Insuficiencia Renal Crónica , Fracturas de la Columna Vertebral , Humanos , Femenino , Masculino , Factores de Riesgo , Persona de Mediana Edad , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/epidemiología , Fracturas de Cadera/epidemiología , Fracturas de Cadera/sangre , Fracturas de la Columna Vertebral/epidemiología , Fracturas de la Columna Vertebral/sangre , Anciano , Factor-23 de Crecimiento de Fibroblastos , Tasa de Filtración Glomerular
7.
Res Sq ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464257

RESUMEN

Background: Coronavirus disease-2019 (COVID-19) may injure the kidney tubules via activation of inflammatory host responses and/or direct viral infiltration. Most studies of kidney injury in COVID-19 lacked contemporaneous controls or measured kidney biomarkers at a single time point. To better understand mechanisms of AKI in COVID-19, we compared kidney outcomes and trajectories of tubular injury, viability, and function in prospectively enrolled critically ill adults with and without COVID-19. Methods: The COVID-19 Host Response and Outcomes (CHROME) study prospectively enrolled patients admitted to intensive care units in Washington state with symptoms of lower respiratory tract infection, determining COVID-19 status by nucleic acid amplification on arrival. We evaluated major adverse kidney events (MAKE) defined as a doubling of serum creatinine, kidney replacement therapy, or death, in 330 patients after inverse probability weighting. In the 181 patients with available biosamples, we determined trajectories of urine kidney injury molecule-1 (KIM-1) and epithelial growth factor (EGF), and urine:plasma ratios of endogenous markers of tubular secretory clearance. Results: At ICU admission, mean age was 55±16 years; 45% required mechanical ventilation; and mean serum creatinine concentration was 1.1 mg/dL. COVID-19 was associated with a 70% greater incidence of MAKE (95% CI 1.05, 2.74) and a 741% greater incidence of KRT (95% CI 1.69, 32.41). The biomarker cohort had a median of three follow-up measurements. Urine EGF, secretory clearance ratios, and eGFR increased over time in the COVID-19 negative group but remained unchanged in the COVID-19 positive group. In contrast, urine KIM-1 concentrations did not significantly change over the course of the study in either group. Conclusions: Among critically ill adults, COVID-19 is associated with a more protracted course of proximal tubular dysfunction.

8.
Nat Med ; 30(3): 810-817, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38454125

RESUMEN

Age is a predominant risk factor for acute kidney injury (AKI), yet the biological mechanisms underlying this risk are largely unknown. Clonal hematopoiesis of indeterminate potential (CHIP) confers increased risk for several chronic diseases associated with aging. Here we sought to test whether CHIP increases the risk of AKI. In three population-based epidemiology cohorts, we found that CHIP was associated with a greater risk of incident AKI, which was more pronounced in patients with AKI requiring dialysis and in individuals with somatic mutations in genes other than DNMT3A, including mutations in TET2 and JAK2. Mendelian randomization analyses supported a causal role for CHIP in promoting AKI. Non-DNMT3A-CHIP was also associated with a nonresolving pattern of injury in patients with AKI. To gain mechanistic insight, we evaluated the role of Tet2-CHIP and Jak2V617F-CHIP in two mouse models of AKI. In both models, CHIP was associated with more severe AKI, greater renal proinflammatory macrophage infiltration and greater post-AKI kidney fibrosis. In summary, this work establishes CHIP as a genetic mechanism conferring impaired kidney function recovery after AKI via an aberrant inflammatory response mediated by renal macrophages.


Asunto(s)
Lesión Renal Aguda , Hematopoyesis Clonal , Animales , Ratones , Humanos , Hematopoyesis Clonal/genética , Hematopoyesis/genética , Factores de Riesgo , Envejecimiento/genética , Lesión Renal Aguda/genética , Mutación/genética
9.
Am J Physiol Renal Physiol ; 326(4): F644-F660, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38420674

RESUMEN

Patients with hypertension or obesity can develop glomerular dysfunction characterized by injury and depletion of podocytes. To better understand the molecular processes involved, young mice were treated with either deoxycorticosterone acetate (DOCA) or fed a high-fat diet (HFD) to induce hypertension or obesity, respectively. The transcriptional changes associated with these phenotypes were measured by unbiased bulk mRNA sequencing of isolated podocytes from experimental models and their respective controls. Key findings were validated by immunostaining. In addition to a decrease in canonical proteins and reduced podocyte number, podocytes from both hypertensive and obese mice exhibited a sterile inflammatory phenotype characterized by increases in NLR family pyrin domain containing 3 (NLRP3) inflammasome, protein cell death-1, and Toll-like receptor pathways. Finally, although the mice were young, podocytes in both models exhibited increased expression of senescence and aging genes, including genes consistent with a senescence-associated secretory phenotype. However, there were differences between the hypertension- and obesity-associated senescence phenotypes. Both show stress-induced podocyte senescence characterized by increased p21 and p53. Moreover, in hypertensive mice, this is superimposed upon age-associated podocyte senescence characterized by increased p16 and p19. These results suggest that senescence, aging, and inflammation are critical aspects of the podocyte phenotype in experimental hypertension and obesity in mice.NEW & NOTEWORTHY Hypertension and obesity can lead to glomerular dysfunction in patients, causing podocyte injury and depletion. Here, young mice given deoxycorticosterone acetate or a high-fat diet to induce hypertension or obesity, respectively. mRNA sequencing of isolated podocytes showed transcriptional changes consistent with senescence, a senescent-associated secretory phenotype, and aging, which was confirmed by immunostaining. Ongoing studies are determining the mechanistic roles of the accelerated aging podocyte phenotype in experimental hypertension and obesity.


Asunto(s)
Hipertensión , Enfermedades Renales , Podocitos , Humanos , Ratones , Animales , Anciano , Podocitos/metabolismo , Ratones Obesos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Fenotipo , Enfermedades Renales/metabolismo , Obesidad/metabolismo , Hipertensión/genética , Hipertensión/metabolismo , Desoxicorticosterona , Acetatos/metabolismo , ARN Mensajero/metabolismo
10.
Clin Chim Acta ; 555: 117799, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38309558

RESUMEN

BACKGROUND: Fibroblast growth factor 21 (FGF21) levels are often elevated in cardiovascular disease (CVD). However, no study has assessed its association with cardiovascular and all-cause mortality in a population free of clinically evident CVD. METHODS: A total of 5543 Multi-Ethnic Study of Atherosclerosis (MESA) participants (mean age 62.7 years, 47.5 % male), free of clinically evident CVD at baseline, were studied. From baseline (2000-2002), 1606 deaths (including 387 CVD deaths) were observed over a median follow-up of 17.7 years. Multivariable Cox regression analysis was performed to assess the association of plasma FGF21 levels with mortality. RESULTS: FGF21 levels at baseline were associated with all-cause mortality, even after adjustment for traditional risk factors, including demographic, socioeconomic and cardiovascular risk factors (adjusted hazard ratio 1.08 [95% confidence interval 1.01, 1.16] per 1 SD increase in ln-transformed levels; 1.27 for the highest vs, lowest quartile). Baseline FGF21 levels were significantly associated with both CVD and non-CVD mortality in unadjusted models. However, the association with non-CVD mortality, but not CVD mortality, remained statistically significant after adjusting for covariates. Similar results were obtained in FGF21 quartile analyses and also when using competing risk regression or matched case-control cohort in sensitivity analyses. CONCLUSIONS: In subjects without clinically-evident CVD at baseline, over 17.7 years follow-up there is a modest association of baseline FGF21 levels with all-cause mortality. The finding that this is driven primarily by a significant association with non-CVD mortality over almost two decades merits further investigation.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Sistema Cardiovascular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Crecimiento de Fibroblastos
12.
Clin Transl Sci ; 17(1): e13678, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37921258

RESUMEN

Kidney function-adjusted drug dosing is currently based solely on the estimated glomerular filtration rate (GFR), however, kidney drug handling is accomplished by a combination of filtration, tubular secretion, and re-absorption. Mechanistic physiologically-based pharmacokinetic (PBPK) models recapitulate anatomic compartments to predict elimination from estimated perfusion, filtration, secretion, and re-absorption, but clinical applications are limited by a lack of empiric individual-level measurements of these functions. We adapted and validated a PBPK model to predict drug clearance from individual biomarker-based estimates of kidney perfusion and secretory clearance. We estimated organic anion transporter-mediated secretion via kynurenic acid clearance and kidney blood flow (KBF) via isovalerylglycine clearance in human participants, incorporating these measurements with GFR into the model to predict kidney drug clearance. We compared measured and model-predicted clearances of administered tenofovir and oseltamivir, which are cleared by both filtration and secretion. There were 27 outpatients (age 55 ± 15 years, mean iohexol-GFR [iGFR] 76 ± 31 mL/min/1.73 m2 ) in this drug clearance study. The mean observed and mechanistic model-predicted tenofovir clearances were 169 ± 102 mL/min and 163 ± 80 mL/min, respectively; estimated mean error of the mechanistic model was 37.1 mL/min (95% confidence interval [CI]: 24-52.9), compared to a mean error of 41.8 mL/min (95% CI: 25-61.6) from regression model. The mean observed and model-predicted oseltamivir carboxylate clearances were 183 ± 104 mL/min and 179 ± 89 mL/min, respectively; estimated mean error of the mechanistic model was 42.9 mL/min (95% CI: 29.7-56.4), versus error of 48.1 mL/min (95% CI: 31.2-67.3) from the regression model. Individualized estimates of tubular secretion and KBF improved the accuracy of PBPK model-predicted tenofovir and oseltamivir kidney clearances, suggesting the potential for biomarker-informed measures of kidney function to refine personalized drug dosing.


Asunto(s)
Riñón , Oseltamivir , Humanos , Adulto , Persona de Mediana Edad , Anciano , Pruebas de Función Renal , Tasa de Filtración Glomerular/fisiología , Biomarcadores , Tenofovir
15.
Diabetes Care ; 46(12): 2223-2231, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37796480

RESUMEN

OBJECTIVE: We sought to study the associations between plasma metabolites in the tryptophan-kynurenine pathway and the risk of progression to end-stage kidney disease (ESKD) in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS: Plasma tryptophan, kynurenine, 3-hydroxykynurenine, kynurenic acid, and xanthurenic acid concentrations were measured in discovery (n = 1,915) and replication (n = 346) cohorts. External validation was performed in Chronic Renal Insufficiency Cohort (CRIC) participants with diabetes (n = 1,312). The primary outcome was a composite of incident ESKD (progression to estimated glomerular filtration rate [eGFR] <15 mL/min/1.73 m2, sustained dialysis, or renal death). The secondary outcome was annual eGFR decline. RESULTS: In the discovery cohort, tryptophan was inversely associated with risk for ESKD, and kynurenine-to-tryptophan ratio (KTR) was positively associated with risk for ESKD after adjustment for clinical risk factors, including baseline eGFR and albuminuria (adjusted hazard ratios [HRs] 0.62 [95% CI 0.51, 0.75] and 1.48 [1.20, 1.84] per 1 SD). High levels of kynurenic acid and xanthurenic acid were associated with low risks of ESKD (0.74 [0.60, 0.91] and 0.74 [0.60, 0.91]). Consistently, high levels of tryptophan, kynurenic acid, and xanthurenic acid were independently associated with a slower eGFR decline, while a high KTR was predictive of a faster eGFR decline. Similar outcomes were obtained in the replication cohort. Furthermore, the inverse association between kynurenic acid and risk of ESKD was externally validated in CRIC participants with diabetes (adjusted HR 0.78 [0.65, 0.93]). CONCLUSIONS: Accelerated catabolism of tryptophan in the kynurenine pathway may be involved in progressive loss of kidney function. However, shunting the kynurenine pathway toward the kynurenic acid branch may potentially slow renal progression.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fallo Renal Crónico , Humanos , Quinurenina/metabolismo , Triptófano/metabolismo , Ácido Quinurénico , Diabetes Mellitus Tipo 2/complicaciones , Progresión de la Enfermedad
16.
Artículo en Inglés | MEDLINE | ID: mdl-37871959

RESUMEN

BACKGROUND: Whether biomarkers of tubular injury and inflammation indicate subclinical structural kidney pathology early in type 1 diabetes remains unknown. METHODS: We investigated associations of biomarkers of tubular injury and inflammation with kidney structural features in 244 adults with type 1 diabetes from the Renin-Angiotensin System Study, a randomized, placebo-controlled trial testing effects of enalapril or losartan on changes in glomerular, tubulointerstitial, and vascular parameters from baseline to 5-year kidney biopsies. Biosamples at biopsy were assessed for kidney injury molecule 1 (KIM-1), soluble TNF receptor 1 (sTNFR1), arginine-to-citrulline ratio in plasma, and uromodulin and epidermal growth factor (EGF) in urine. We examined cross-sectional correlations between biomarkers and biopsy features and baseline biomarker associations with 5-year changes in biopsy features. RESULTS: Participants' mean age was 30 years (SD 10) and diabetes duration 11 years (SD 5); 53% were women. The mean GFR measured by iohexol disappearance was 128 ml/min per 1.73 m 2 (SD 19) and median urinary albumin excretion was 5 µ g/min (interquartile range, 3-8). KIM-1 was associated with most biopsy features: higher mesangial fractional volume (0.5% [95% confidence interval (CI), 0.1 to 0.9] greater per SD KIM-1), glomerular basement membrane (GBM) width (14.2 nm [95% CI, 6.5 to 22.0] thicker), cortical interstitial fractional volume (1.1% [95% CI, 0.6 to 1.6] greater), fractional volume of cortical atrophic tubules (0.6% [95% CI, 0.2 to 0.9] greater), and arteriolar hyalinosis index (0.03 [95% CI, 0.1 to 0.05] higher). sTNFR1 was associated with higher mesangial fractional volume (0.9% [95% CI, 0.5 to 1.3] greater) and GBM width (12.5 nm [95% CI, 4.5 to 20.5] thicker) and lower GBM surface density (0.003 µ m 2 / µ m 3 [95% CI, 0.005 to 0.001] lesser). EGF and arginine-to-citrulline ratio correlated with severity of glomerular and tubulointerstitial features. Baseline sTNFR1, uromodulin, and EGF concentrations were associated with 5-year glomerular and tubulointerstitial feature progression. CONCLUSIONS: Biomarkers of tubular injury and inflammation were associated with kidney structural parameters in early type 1 diabetes and may be indicators of kidney disease risk. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Renin Angiotensin System Study (RASS/B-RASS), NCT00143949.

17.
Kidney Med ; 5(10): 100708, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37731962

RESUMEN

Rationale & Objective: Patients with chronic kidney disease (CKD) have dysfunctional high-density lipoprotein (HDL) particles that lack cardioprotective properties; altered lipid composition may be associated with these changes. To investigate HDL lipids as potential cardiovascular risk factors in CKD, we tested the associations of HDL ceramides, sphingomyelins, and phosphatidylcholines with mortality. Study Design: We leveraged data from a longitudinal prospective cohort of participants with CKD. Setting & Participants: We included participants aged greater than 21 years with CKD, excluding those on maintenance dialysis or with prior kidney transplant. Exposure: HDL particles were isolated using density gradient ultracentrifugation. We quantified the relative abundance of HDL ceramides, sphingomyelins, and phosphatidylcholines via liquid chromatography tandem mass spectrometry (LC-MS/MS). Outcomes: Our primary outcome was all-cause mortality. Analytical Approach: We tested associations using Cox regressions adjusted for demographics, comorbid conditions, laboratory values, medication use, and highly correlated lipids with opposed effects, controlling for multiple comparisons with false discovery rates (FDR). Results: There were 168 deaths over a median follow-up of 6.12 years (interquartile range, 3.71-9.32). After adjustment, relative abundance of HDL ceramides (HR, 1.22 per standard deviation; 95% CI, 1.06-1.39), sphingomyelins with long fatty acids (HR, 1.44; 95% CI, 1.05-1.98), and saturated and monounsaturated phosphatidylcholines (HR, 1.22; 95% CI, 1.06-1.41) were significantly associated with increased risk of all-cause mortality (FDR < 5%). Limitations: We were unable to test associations with cardiovascular disease given limited power. HDL lipidomics may not reflect plasma lipidomics. LC-MS/MS is unable to differentiate between glucosylceramides and galactosylceramides. The cohort was comprised of research volunteers in the Seattle area with CKD. Conclusions: Greater relative HDL abundance of 3 classes of lipids was associated with higher risk of all-cause mortality in CKD; sphingomyelins with very long fatty acids were associated with a lower risk. Altered lipid composition of HDL particles may be a novel cardiovascular risk factor in CKD. Plain-Language Summary: Patients with chronic kidney disease have abnormal high-density lipoprotein (HDL) particles that lack the beneficial properties associated with these particles in patients with normal kidney function. To investigate if small lipid molecules found on the surface of HDL might be associated with these changes, we tested the associations of lipid molecules found on HDL with death among patients with chronic kidney disease. We found that several lipid molecules found on the surface of HDL were associated with increased risk of death among these patients. These findings suggest that lipid molecules may be risk factors for death among patients with chronic kidney disease.

18.
J Clin Invest ; 133(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37616058

RESUMEN

Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality; however, few mechanistic biomarkers are available for high-risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from the Chronic Renal Insufficiency Cohort (CRIC) study, the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in Type 2 Diabetes (SMART2D), and the American Indian Study determined whether urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in the CRIC study and SMART2D. ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in the CRIC study, SMART2D, and the American Indian study. Empagliflozin lowered UAdCR in nonmacroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology, and single-cell transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mTOR. Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Fallo Renal Crónico , Humanos , Animales , Ratones , Nefropatías Diabéticas/patología , Adenina , Diabetes Mellitus Experimental/complicaciones , Riñón/metabolismo , Biomarcadores , Serina-Treonina Quinasas TOR
19.
J Am Heart Assoc ; 12(14): e028561, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37421259

RESUMEN

Background The ratio of 24,25-dihydroxyvitamin D3/25-hydroxyvitamin D3 (vitamin D metabolite ratio [VDMR]) may reflect functional vitamin D activity. We examined associations of the VDMR, 25-hydroxyvitamin D (25[OH]D), and 1,25-dihydroxyvitamin D (1,25[OH]2D) with cardiovascular disease (CVD) in patients with chronic kidney disease. Methods and Results This study included longitudinal and cross-sectional analyses of 1786 participants from the CRIC (Chronic Renal Insufficiency Cohort) Study. Serum 24,25-dihydroxyvitamin D3, 25(OH)D, and 1,25(OH)2D were measured by liquid chromatography-tandem mass spectrometry 1 year after enrollment. The primary outcome was composite CVD (heart failure, myocardial infarction, stroke, and peripheral arterial disease). We used Cox regression with regression-calibrated weights to test associations of the VDMR, 25(OH)D, and 1,25(OH)2D with incident CVD. We examined cross-sectional associations of these metabolites with left ventricular mass index using linear regression. Analytic models adjusted for demographics, comorbidity, medications, estimated glomerular filtration rate, and proteinuria. The cohort was 42% non-Hispanic White race and ethnicity, 42% non-Hispanic Black race and ethnicity, and 12% Hispanic ethnicity. Mean age was 59 years, and 43% were women. Among 1066 participants without prevalent CVD, there were 298 composite first CVD events over a mean follow-up of 8.6 years. Lower VDMR and 1,25(OH)2D were associated with incident CVD before, but not after, adjustment for estimated glomerular filtration rate and proteinuria (hazard ratio, 1.11 per 1 SD lower VDMR [95% CI, 0.95-1.31]). Only 25(OH)D was associated with left ventricular mass index after full covariate adjustment (0.6 g/m2.7 per 10 ng/mL lower [95% CI, 0.0-1.3]). Conclusions Despite modest associations of 25(OH)D with left ventricular mass index, 25(OH)D, the VDMR, and 1,25(OH)2D were not associated with incident CVD in chronic kidney disease.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Renal Crónica , Humanos , Femenino , Persona de Mediana Edad , Masculino , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Estudios Transversales , Vitamina D , Ergocalciferoles , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Vitaminas , Proteinuria , Factores de Riesgo
20.
medRxiv ; 2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37398187

RESUMEN

Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality, however, few mechanistic biomarkers are available for high risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from Chronic Renal Insufficiency Cohort (CRIC), Singapore Study of Macro-Angiopathy and Reactivity in Type 2 Diabetes (SMART2D), and the Pima Indian Study determined if urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in CRIC (HR 1.57, 1.18, 2.10) and SMART2D (HR 1.77, 1.00, 3.12). ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in CRIC (HR 2.36, 1.26, 4.39), SMART2D (HR 2.39, 1.08, 5.29), and Pima Indian study (HR 4.57, CI 1.37-13.34). Empagliflozin lowered UAdCR in non-macroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology and transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mammalian target of rapamycin (mTOR). Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA