Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Science ; 381(6660): 897-906, 2023 08 25.
Article En | MEDLINE | ID: mdl-37616346

Aging is a major risk factor for impaired cardiovascular health. Because the aging myocardium is characterized by microcirculatory dysfunction, and because nerves align with vessels, we assessed the impact of aging on the cardiac neurovascular interface. We report that aging reduces nerve density in the ventricle and dysregulates vascular-derived neuroregulatory genes. Aging down-regulates microRNA 145 (miR-145) and derepresses the neurorepulsive factor semaphorin-3A. miR-145 deletion, which increased Sema3a expression or endothelial Sema3a overexpression, reduced axon density, mimicking the aged-heart phenotype. Removal of senescent cells, which accumulated with chronological age in parallel to the decline in nerve density, rescued age-induced denervation, reversed Sema3a expression, preserved heart rate patterns, and reduced electrical instability. These data suggest that senescence-mediated regulation of nerve density contributes to age-associated cardiac dysfunction.


Aging , Cellular Senescence , Heart , MicroRNAs , Microvascular Density , Myocardium , Semaphorin-3A , Heart/innervation , Microcirculation , MicroRNAs/genetics , MicroRNAs/metabolism , Semaphorin-3A/genetics , Animals , Mice , Aging/genetics , Aging/pathology , Male , Mice, Inbred C57BL , Cellular Senescence/genetics , Myocardium/pathology , Axons
2.
JCI Insight ; 8(5)2023 03 08.
Article En | MEDLINE | ID: mdl-36883566

The adult mammalian heart has limited regenerative capacity, while the neonatal heart fully regenerates during the first week of life. Postnatal regeneration is mainly driven by proliferation of preexisting cardiomyocytes and supported by proregenerative macrophages and angiogenesis. Although the process of regeneration has been well studied in the neonatal mouse, the molecular mechanisms that define the switch between regenerative and nonregenerative cardiomyocytes are not well understood. Here, using in vivo and in vitro approaches, we identified the lncRNA Malat1 as a key player in postnatal cardiac regeneration. Malat1 deletion prevented heart regeneration in mice after myocardial infarction on postnatal day 3 associated with a decline in cardiomyocyte proliferation and reparative angiogenesis. Interestingly, Malat1 deficiency increased cardiomyocyte binucleation even in the absence of cardiac injury. Cardiomyocyte-specific deletion of Malat1 was sufficient to block regeneration, supporting a critical role of Malat1 in regulating cardiomyocyte proliferation and binucleation, a landmark of mature nonregenerative cardiomyocytes. In vitro, Malat1 deficiency induced binucleation and the expression of a maturation gene program. Finally, the loss of hnRNP U, an interaction partner of Malat1, induced similar features in vitro, suggesting that Malat1 regulates cardiomyocyte proliferation and binucleation by hnRNP U to control the regenerative window in the heart.


Heart , Heterogeneous-Nuclear Ribonucleoprotein U , Myocardial Infarction , Myocytes, Cardiac , RNA, Long Noncoding , Regeneration , Animals , Mice , Heart/physiology , Heart/physiopathology , Heart Injuries/genetics , Heart Injuries/metabolism , Heart Injuries/physiopathology , Heterogeneous-Nuclear Ribonucleoprotein U/genetics , Heterogeneous-Nuclear Ribonucleoprotein U/metabolism , Macrophages/metabolism , Macrophages/physiology , Mammals , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/physiology , Regeneration/genetics , Regeneration/physiology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
...