Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Chaos ; 34(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38787313

RESUMEN

Motivated by an exact mapping between equilibrium properties of a one-dimensional chain of quantum Ising spins in a transverse field (the transverse field Ising (TFI) model) and a two-dimensional classical array of particles in double-well potentials (the "ϕ4 model") with weak inter-chain coupling, we explore connections between the driven variants of the two systems. We argue that coupling between the fundamental topological solitary waves in the form of kinks between neighboring chains in the classical ϕ4 system is the analog of the competing effect of the transverse field on spin flips in the quantum TFI model. As an example application, we mimic simplified measurement protocols in a closed quantum model system by studying the classical ϕ4 model subjected to periodic perturbations. This reveals memory/loss of memory and coherence/decoherence regimes, whose quantum analogs are essential in annealing phenomena. In particular, we examine regimes where the topological excitations control the thermal equilibration following perturbations. This paves the way for further explorations of the analogy between lower-dimensional linear quantum and higher-dimensional classical nonlinear systems.

2.
Phys Rev E ; 109(2-1): 024205, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38491660

RESUMEN

In the present work we explore the interaction of a quasi-one-dimensional line kink of the sine-Gordon equation moving in two-dimensional spatial domains. We develop an effective equation describing the kink motion, characterizing its center position dynamics as a function of the transverse variable. The relevant description is valid both in the Hamiltonian realm and in the nonconservative one bearing gain and loss. We subsequently examine a variety of different scenarios, without and with a spatially dependent heterogeneity. The latter is considered both to be one dimensional (y independent) and genuinely two dimensional. The spectral features and the dynamical interaction of the kink with the heterogeneity are considered and comparison with the effective quasi-one-dimensional description (characterizing the kink center as a function of the transverse variable) is also provided. Generally, good agreement is found between the analytical predictions and the computational findings in the different cases considered.

3.
Phys Rev E ; 108(5-1): 054224, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115531

RESUMEN

We consider a dimer lattice of the Fermi-Pasta-Ulam-Tsingou (FPUT) type, where alternating linear couplings have a controllably small difference and the cubic nonlinearity (ß-FPUT) is the same for all interaction pairs. We use a weakly nonlinear formal reduction within the lattice band gap to obtain a continuum, nonlinear Dirac-type system. We derive the Dirac soliton profiles and the model's conservation laws analytically. We then examine the cases of the semi-infinite and the finite domains and illustrate how the soliton solutions of the bulk problem can be glued to the boundaries for different types of boundary conditions. We thus explain the existence of various kinds of nonlinear edge states in the system, of which only one leads to the standard topological edge states observed in the linear limit. We finally examine the stability of bulk and edge states and verify them through direct numerical simulations, in which we observe a solitonlike wave setting into motion due to the instability.

4.
Phys Rev E ; 108(3-1): 034203, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37849081

RESUMEN

In the present study the interaction of a sine-Gordon kink with a localized inhomogeneity is considered. In the absence of dissipation, the inhomogeneity considered is found to impose a potential energy barrier. The motion of the kink for near-critical values of velocities separating transmission from barrier reflection is studied. Moreover, the existence and stability properties of the kink at the relevant saddle point are examined and its dynamics is found to be accurately captured by effective low-dimensional models. In the case where there is dissipation in the system, below the threshold value of the current, a stable kink is found to exist in the immediate vicinity of the barrier. The effective particle motion of the kink is investigated obtaining very good agreement with the result of the original field model. Both one and two degree-of-freedom settings are examined with the latter being more efficient than the former in capturing the details of the kink motion.

5.
Phys Rev E ; 107(3-1): 034217, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37072957

RESUMEN

In the present work we explore the concept of solitary wave billiards. That is, instead of a point particle, we examine a solitary wave in an enclosed region and examine its collision with the boundaries and the resulting trajectories in cases which for particle billiards are known to be integrable and for cases that are known to be chaotic. A principal conclusion is that solitary wave billiards are generically found to be chaotic even in cases where the classical particle billiards are integrable. However, the degree of resulting chaoticity depends on the particle speed and on the properties of the potential. Furthermore, the nature of the scattering of the deformable solitary wave particle is elucidated on the basis of a negative Goos-Hänchen effect which, in addition to a trajectory shift, also results in an effective shrinkage of the billiard domain.

6.
Phys Rev E ; 107(2-1): 024202, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36932573

RESUMEN

In the present work we revisit the Salerno model as a prototypical system that interpolates between a well-known integrable system (the Ablowitz-Ladik lattice) and an experimentally tractable, nonintegrable one (the discrete nonlinear Schrödinger model). The question we ask is, for "generic" initial data, how close are the integrable to the nonintegrable models? Our more precise formulation of this question is, How well is the constancy of formerly conserved quantities preserved in the nonintegrable case? Upon examining this, we find that even slight deviations from integrability can be sensitively felt by measuring these formerly conserved quantities in the case of the Salerno model. However, given that the knowledge of these quantities requires a deep physical and mathematical analysis of the system, we seek a more "generic" diagnostic towards a manifestation of integrability breaking. We argue, based on our Salerno model computations, that the full spectrum of Lyapunov exponents could be a sensitive diagnostic to that effect.

7.
Phys Rev E ; 107(1-1): 014220, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36797898

RESUMEN

We consider a previously experimentally realized discrete model that describes a mechanical metamaterial consisting of a chain of pairs of rigid units connected by flexible hinges. Upon analyzing the linear band structure of the model, we identify parameter regimes in which this system may possess discrete breather solutions with frequencies inside the gap between optical and acoustic dispersion bands. We compute numerically exact solutions of this type for several different parameter regimes and investigate their properties and stability. Our findings demonstrate that upon appropriate parameter tuning within experimentally tractable ranges, the system exhibits a plethora of discrete breathers, with multiple branches of solutions that feature period-doubling and symmetry-breaking bifurcations, in addition to other mechanisms of stability change such as saddle-center and Hamiltonian Hopf bifurcations. The relevant stability analysis is corroborated by direct numerical computations examining the dynamical properties of the system and paving the way for potential further experimental exploration of this rich nonlinear dynamical lattice setting.

8.
Viruses ; 14(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36366562

RESUMEN

Many approaches using compartmental models have been used to study the COVID-19 pandemic, with machine learning methods applied to these models having particularly notable success. We consider the Susceptible-Infected-Confirmed-Recovered-Deceased (SICRD) compartmental model, with the goal of estimating the unknown infected compartment I, and several unknown parameters. We apply a variation of a "Physics Informed Neural Network" (PINN), which uses knowledge of the system to aid learning. First, we ensure estimation is possible by verifying the model's identifiability. Then, we propose a wavelet transform to process data for the network training. Finally, our central result is a novel modification of the PINN's loss function to reduce the number of simultaneously considered unknowns. We find that our modified network is capable of stable, efficient, and accurate estimation, while the unmodified network consistently yields incorrect values. The modified network is also shown to be efficient enough to be applied to a model with time-varying parameters. We present an application of our model results for ranking states by their estimated relative testing efficiency. Our findings suggest the effectiveness of our modified PINN network, especially in the case of multiple unknown variables.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias , Modelos Epidemiológicos , Redes Neurales de la Computación , Física
9.
Phys Rev E ; 106(3-1): 034209, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36266868

RESUMEN

We study the interactions of two or more solitary waves in the Adlam-Allen model describing the evolution of a (cold) plasma of positive and negative charges, in the presence of electric and transverse magnetic fields. In order to show that the interactions feature an exponentially repulsive nature, we elaborate two distinct approaches: (a) using energetic considerations and the Hamiltonian structure of the model, and (b) using the so-called Manton method. We compare these findings with results of direct simulations, and we identify adjustments necessary to achieve a quantitative match between them. Additional connections are made, such as with solitons of the Korteweg-de Vries equation. New challenges are identified in connection to this model and its solitary waves.

10.
Phys Rev E ; 104(5-1): 054209, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34942715

RESUMEN

We systematically study linear and nonlinear wave propagation in a chain composed of piecewise-linear bistable springs. Such bistable systems are ideal test beds for supporting nonlinear wave dynamical features including transition and (supersonic) solitary waves. We show that bistable chains can support the propagation of subsonic wave packets which in turn can be trapped by a low-energy phase to induce energy localization. The spatial distribution of these energy foci strongly affects the propagation of linear waves, typically causing scattering, but, in special cases, leading to a reflectionless mode analogous to the Ramsauer-Townsend effect. Furthermore, we show that the propagation of nonlinear waves can spontaneously generate or remove additional foci, which act as effective "impurities." This behavior serves as a new mechanism for reversibly programming the dynamic response of bistable chains.

11.
Phys Rev E ; 103(3-1): 032211, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33862787

RESUMEN

The Salerno model constitutes an intriguing interpolation between the integrable Ablowitz-Ladik (AL) model and the more standard (nonintegrable) discrete nonlinear Schrödinger (DNLS) one. The competition of local on-site nonlinearity and nonlinear dispersion governs the thermalization of this model. Here, we investigate the statistical mechanics of the Salerno one-dimensional lattice model in the nonintegrable case and illustrate the thermalization in the Gibbs regime. As the parameter interpolating between the two limits (from DNLS toward AL) is varied, the region in the space of initial energy and norm densities leading to thermalization expands. The thermalization in the non-Gibbs regime heavily depends on the finite system size; we explore this feature via direct numerical computations for different parametric regimes.

12.
Phys Rev Lett ; 125(17): 170401, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33156677

RESUMEN

Ultracold gases provide an unprecedented level of control for the investigation of soliton dynamics and collisions. We present a scheme for deterministically preparing pairs of three-component solitons in a Bose-Einstein condensate. Our method is based on local spin rotations which simultaneously imprint suitable phase and density distributions. This enables us to observe striking collisional properties of the vector degree of freedom which naturally arises for the coherent nature of the emerging multicomponent solitons. We find that the solitonic properties in the quasi-one-dimensional system are quantitatively described by the integrable repulsive three-component Manakov model.

13.
Sci Adv ; 5(5): eaau2835, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31139744

RESUMEN

The principles underlying the art of origami paper folding can be applied to design sophisticated metamaterials with unique mechanical properties. By exploiting the flat crease patterns that determine the dynamic folding and unfolding motion of origami, we are able to design an origami-based metamaterial that can form rarefaction solitary waves. Our analytical, numerical, and experimental results demonstrate that this rarefaction solitary wave overtakes initial compressive strain waves, thereby causing the latter part of the origami structure to feel tension first instead of compression under impact. This counterintuitive dynamic mechanism can be used to create a highly efficient-yet reusable-impact mitigating system without relying on material damping, plasticity, or fracture.

14.
Proc Math Phys Eng Sci ; 474(2213): 20170553, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29887743

RESUMEN

We consider vortex dynamics in the context of Bose-Einstein condensates (BECs) with a rotating trap, with or without anisotropy. Starting with the Gross-Pitaevskii (GP) partial differential equation (PDE), we derive a novel reduced system of ordinary differential equations (ODEs) that describes stable configurations of multiple co-rotating vortices (vortex crystals). This description is found to be quite accurate quantitatively especially in the case of multiple vortices. In the limit of many vortices, BECs are known to form vortex crystal structures, whereby vortices tend to arrange themselves in a hexagonal-like spatial configuration. Using our asymptotic reduction, we derive the effective vortex crystal density and its radius. We also obtain an asymptotic estimate for the maximum number of vortices as a function of rotation rate. We extend considerations to the anisotropic trap case, confirming that a pair of vortices lying on the long (short) axis is linearly stable (unstable), corroborating the ODE reduction results with full PDE simulations. We then further investigate the many-vortex limit in the case of strong anisotropic potential. In this limit, the vortices tend to align themselves along the long axis, and we compute the effective one-dimensional vortex density, as well as the maximum admissible number of vortices. Detailed numerical simulations of the GP equation are used to confirm our analytical predictions.

15.
Nat Commun ; 9(1): 1467, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29654228

RESUMEN

Quantum vortices, the quantized version of classical vortices, play a prominent role in superfluid and superconductor phase transitions. However, their exploration at a particle level in open quantum systems has gained considerable attention only recently. Here we study vortex pair interactions in a resonant polariton fluid created in a solid-state microcavity. By tracking the vortices on picosecond time scales, we reveal the role of nonlinearity, as well as of density and phase gradients, in driving their rotational dynamics. Such effects are also responsible for the split of composite spin-vortex molecules into elementary half-vortices, when seeding opposite vorticity between the two spinorial components. Remarkably, we also observe that vortices placed in close proximity experience a pull-push scenario leading to unusual scattering-like events that can be described by a tunable effective potential. Understanding vortex interactions can be useful in quantum hydrodynamics and in the development of vortex-based lattices, gyroscopes, and logic devices.

16.
Philos Trans A Math Phys Eng Sci ; 376(2117)2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29507176

RESUMEN

In this work, we revisit a criterion, originally proposed in Friesecke & Pego (Friesecke & Pego 2004 Nonlinearity17, 207-227. (doi:10.1088/0951715/17/1/013)), for the stability of solitary travelling waves in Hamiltonian, infinite-dimensional lattice dynamical systems. We discuss the implications of this criterion from the point of view of stability theory, both at the level of the spectral analysis of the advance-delay differential equations in the co-travelling frame, as well as at that of the Floquet problem arising when considering the travelling wave as a periodic orbit modulo shift. We establish the correspondence of these perspectives for the pertinent eigenvalue and Floquet multiplier and provide explicit expressions for their dependence on the velocity of the travelling wave in the vicinity of the critical point. Numerical results are used to corroborate the relevant predictions in two different models, where the stability may change twice. Some extensions, generalizations and future directions of this investigation are also discussed.This article is part of the theme issue 'Stability of nonlinear waves and patterns and related topics'.

17.
Nat Commun ; 8(1): 1562, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29146925

RESUMEN

When mathematical and computational dynamic models reach infinity in finite time, extending analysis and numerics beyond it becomes a notorious challenge. We suggest how, upon suitable transformations, it may become possible to go beyond infinity with the solution becoming again well behaved and the computations continuing normally. In our Ordinary Differential Equation examples the crossing of infinity occurs instantaneously. For Partial Differential Equations, the crossing of infinity may persist for finite time, necessitating the introduction of buffer zones, within which an appropriate transformation is adaptively identified. Along the path of our analysis, we present a regularization process via complexification and explore its impact on the dynamics; we also discuss a set of compactification transformations and their intuitive implications. This methodology could be useful toward a systematic approach to bypassing infinity and thus going beyond it in a broader range of evolution equation models.

18.
Phys Rev E ; 96(3-1): 032214, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29346986

RESUMEN

In this work, we provide two complementary perspectives for the (spectral) stability of solitary traveling waves in Hamiltonian nonlinear dynamical lattices, of which the Fermi-Pasta-Ulam and the Toda lattice are prototypical examples. One is as an eigenvalue problem for a stationary solution in a cotraveling frame, while the other is as a periodic orbit modulo shifts. We connect the eigenvalues of the former with the Floquet multipliers of the latter and using this formulation derive an energy-based spectral stability criterion. It states that a sufficient (but not necessary) condition for a change in the wave stability occurs when the functional dependence of the energy (Hamiltonian) H of the model on the wave velocity c changes its monotonicity. Moreover, near the critical velocity where the change of stability occurs, we provide an explicit leading-order computation of the unstable eigenvalues, based on the second derivative of the Hamiltonian H^{''}(c_{0}) evaluated at the critical velocity c_{0}. We corroborate this conclusion with a series of analytically and numerically tractable examples and discuss its parallels with a recent energy-based criterion for the stability of discrete breathers.

19.
Phys Rev Lett ; 117(9): 094101, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27610856

RESUMEN

Discrete breathers are ubiquitous structures in nonlinear anharmonic models ranging from the prototypical example of the Fermi-Pasta-Ulam model to Klein-Gordon nonlinear lattices, among many others. We propose a general criterion for the emergence of instabilities of discrete breathers analogous to the well-established Vakhitov-Kolokolov criterion for solitary waves. The criterion involves the change of monotonicity of the discrete breather's energy as a function of the breather frequency. Our analysis suggests and numerical results corroborate that breathers with increasing (decreasing) energy-frequency dependence are generically unstable in soft (hard) nonlinear potentials.

20.
Phys Rev Lett ; 116(21): 214101, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27284659

RESUMEN

We explore a prototypical two-dimensional massive model of the nonlinear Dirac type and examine its solitary wave and vortex solutions. In addition to identifying the stationary states, we provide a systematic spectral stability analysis, illustrating the potential of spinor solutions to be neutrally stable in a wide parametric interval of frequencies. Solutions of higher vorticity are generically unstable and split into lower charge vortices in a way that preserves the total vorticity. These conclusions are found not to be restricted to the case of cubic two-dimensional nonlinearities but are found to be extended to the case of quintic nonlinearity, as well as to that of three spatial dimensions. Our results also reveal nontrivial differences with respect to the better understood nonrelativistic analogue of the model, namely the nonlinear Schrödinger equation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...