Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Intervalo de año de publicación
1.
Adv Pharm Bull ; 14(1): 120-131, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38585465

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease caused by the loss of dopaminergic neurons. Genetic factors, inflammatory responses, oxidative stress, metabolic disorders, cytotoxic factors, and mitochondrial dysfunction are all involved in neuronal death in neurodegenerative diseases. The risk of PD can be higher in aging individuals due to decreased mitochondrial function, energy metabolism, and AMP-activated protein kinase (AMPK) function. The potential of AMPK to regulate neurodegenerative disorders lies in its ability to enhance antioxidant capacity, reduce oxidative stress, improve mitochondrial function, decrease mitophagy and macroautophagy, and inhibit inflammation. In addition, it has been shown that modulating the catalytic activity of AMPK can protect the nervous system. This article reviews the mechanisms by which AMPK activation can modulate PD.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38478319

RESUMEN

Inflammation is an essential factor in pulmonary complications of diabetes. Bone marrow (BM)-derived C-kit+ cells have immunomodulatory properties and their transplantation is suggested as a promising strategy for ameliorating diabetes complications. This study evaluated the effect of BM-derived C-kit+ cells on the inflammation signaling pathway in lung tissue of type 2 diabetic male rats. Ten rats were used to extract C-kit cells, and 48 male Wistar rats weighing 180 ± 20 g were randomly divided into four equal groups: (1) Control (Cont), (2) Diabetic (D), (3) Diabetic + C-kit+ cells (D + C-kit pos) intravenously injected 50-µl phosphate buffer saline (PBS) containing 300,000 C-kit+ cells, and (4) Diabetic + C-kit- cells (D + C-kit neg), intravenously injected C-kit- cells. Diabetes induction increased IL-33, ST-2, CD127, and IL-2 levels and decreased IL-10. C-kit+ cell therapy significantly decreased IL-33 and CD127 and increased IL-10. In addition, lung histopathological changes significantly improved in the C-kit+ group compared to the diabetic group. These findings suggest that C-kit+ cells may have a potential therapeutic role in mitigating diabetes-induced respiratory complications via ameliorating the inflammation and histopathological changes in lung tissue.

3.
Iran J Basic Med Sci ; 27(1): 74-80, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164478

RESUMEN

Objectives: This study aimed to evaluate the effects of voluntary exercise as an anti-inflammatory intervention on the pulmonary levels of inflammatory cytokines in type 2 diabetic male rats. Materials and Methods: Twenty-eight male Wistar rats were divided into four groups (n=7), including control (Col), diabetic (Dia), voluntary exercise (Exe), and diabetic with voluntary exercise (Dia+Exe). Diabetes was induced by a high-fat diet (4 weeks) and intraperitoneal injection of streptozotocin (35 mg/kg), and animals did training on the running wheel for 10 weeks as voluntary exercise. Finally, the rats were euthanized and the lung tissues were sampled for the evaluation of the levels of pulmonary interleukin (IL)-10, IL-11, and TNF-α using ELISA, and the protein levels of Nrf-2 and NF-κB using western blotting and tissue histopathological analysis. Results: Diabetes reduced the IL-10, IL-11, and Nrf2 levels (P<0.001 to P<0.01) and increased the levels of TNF-α and NF-κB compared to the Col group (P<0.001). Lung tissue levels of IL-10, IL-11, and Nrf2 in the Dia+Exe group enhanced compared to the Dia group (P<0.001 to P<0.05), however; the TNF-α and NF-κB levels decreased (P<0.001). The level of pulmonary Nrf2 in the Dia+Exe group was lower than that of the Exe group while the NF-κB level increased (P<0.001). Moreover, diabetes caused histopathological changes in lung tissue which improved with exercise in the Dia+Exe group. Conclusion: These findings showed that voluntary exercise could improve diabetes-induced pulmonary complications by ameliorating inflammatory conditions.

4.
Mol Cell Biochem ; 479(3): 603-615, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37129768

RESUMEN

Stem cell-based therapy has been proposed as a novel therapeutic strategy for diabetic nephropathy. This study was designed to evaluate the effect of systemic administration of rat bone marrow-derived c-kit positive (c-kit+) cells on diabetic nephropathy in male rats, focusing on PI3K/AKT/GSK-3ß pathway and apoptosis as a possible therapeutic mechanism. Twenty-eight animals were randomly classified into four groups: Control group (C), diabetic group (D), diabetic group, intravenously received 50 µl phosphate-buffered saline (PBS) containing 3 × 105 c-kit- cells (D + ckit-); and diabetic group, intravenously received 50 µl PBS containing 3 × 105 c-Kit positive cells (D + ckit+). Control and diabetic groups intravenously received 50 µl PBS. C-kit+ cell therapy could reduce renal fibrosis, which was associated with attenuation of inflammation as indicated by decreased TNF-α and IL-6 levels in the kidney tissue. In addition, c-kit+ cells restored the expression levels of PI3K, pAKT, and GSK-3ß proteins. Furthermore, renal apoptosis was decreased following c-kit+ cell therapy, evidenced by the lower apoptotic index in parallel with the increased Bcl-2 and decreased Bax and Caspase-3 levels. Our results showed that in contrast to c-kit- cells, the administration of c-kit+ cells ameliorate diabetic nephropathy and suggested that c-kit+ cells could be an alternative cell source for attenuating diabetic nephropathy.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Nefropatías Diabéticas , Animales , Masculino , Ratas , Apoptosis , Médula Ósea/metabolismo , Nefropatías Diabéticas/terapia , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Células Madre/metabolismo , Proteínas Proto-Oncogénicas c-kit , Complicaciones de la Diabetes/metabolismo , Células Madre Mesenquimatosas/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos/métodos
5.
Behav Brain Res ; 451: 114507, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37236269

RESUMEN

This research was conducted to investigate the possible beneficial impacts of voluntary exercise on sciatic tissue, nitric oxide levels, stereological changes, and peripheral neuropathy caused by "high-fat-diet (HFD)"-induced "type 2 diabetes mellitus (T2DM)" in male rats. Rats were put into four experimental groups at random: "healthy control (C), voluntary exercise (VE), diabetic (D), and diabetic rats treated by voluntary exercise (VED)"; each group contain eight animals. Animals in VE and VED groups performed "voluntary exercise (VE)" for ten weeks. Animals in D and VED groups became diabetic after receiving a HFD for four weeks and an intraperitoneal injection (IP) of "streptozotocin (STZ)" (35 mg/kg). In order to evaluate mechanical and thermal algesia, hot plate, tail withdrawal, and von Frey tests were carried out. At the end of this study, serum NOx levels were assessed, and histological and stereological analyses were conducted. Mechanical nociceptive thresholds indicated considerable reduction (p < 0.001) which was followed by a remarkable enhance (p < 0.001) in thermal nociceptive threshold of D group. Tissue changes were also seen in sciatic nerve of D group. Voluntary exercise modified thermal and mechanical sensitivity in diabetic rats. It also improved the damaged sciatic nerve in diabetic animals.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Ratas , Masculino , Animales , Ratas Wistar , Óxido Nítrico/farmacología , Dieta Alta en Grasa/efectos adversos , Nervio Ciático , Estreptozocina/farmacología
6.
Horm Mol Biol Clin Investig ; 44(2): 121-126, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36592952

RESUMEN

OBJECTIVES: Investigation the association of pro-inflammatory markers interleukin (IL)-1ß and IL- 10 expression, serum levels of C-reactive protein (CRP), cyclooxygenase-2 (COX2), High-density lipoprotein (HDL), Apolipoprotein A1 (ApoA1), and ATP Binding Cassette Subfamily A Member 1 (ABCA1) inflammatory proteins with atherosclerosis index (homocysteine) in normal-weight and obese male subjects. METHODS: 59 males including 30 obese (Body mass index (BMI) of ≥30 kg/m2) and 29 normal-weight (BMI of 18.5-24.9 kg/m2) were joined to this study. Plasma levels of IL-1ß and IL-10 (pg/mL), CRP (pg/mL), COX-2 (ng/mL), APOA1 (mg/dL), ABCA1 (ng/mL), HDL, Cholesterol, and Triglyceride (TG) (mg/dL), and homocysteine (µmol/L) was measured. Association of these biomarkers with homocysteine was determined. RESULTS: Obese subjects had higher serum levels of IL10, IL1ß, CRP, COX-2, TG, and cholesterol concentrations (all p<0.05 except IL-10 and cholesterol) and low levels of HDL, APOA1, and ABCA1 (non-significant differences) in comparison to normal-weight group. Homocysteine levels were high in obese men with no significant differences between the two groups. In obese subjects, homocysteine had a significant inverse correlation with APOA1, ABCA1, and HDL, and a strong and moderate positive correlation was found with CRP and TG levels, respectively. CONCLUSIONS: High level of homocysteine and its correlation with inflammation proteins and markers in obese subjects appear to be contributed with atherosclerosis development.


Asunto(s)
Aterosclerosis , Citocinas , Humanos , Masculino , Interleucina-10 , Ciclooxigenasa 2 , Obesidad/complicaciones , Colesterol , Triglicéridos , Lipoproteínas HDL , Proteína C-Reactiva/análisis , Aterosclerosis/etiología
7.
Cell Biochem Funct ; 41(1): 78-85, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36335538

RESUMEN

It has been shown that type 2 Diabetes Mellitus (T2DM) changes the paracrine activity of several cell types. Whether the biogenesis of exosomes is changed during diabetic conditions is the subject of debate. Here, we investigated the effect of T2M on exosome biogenesis in rat pulmonary tissue. Rats received a high-fat diet regime and a single low dose of Streptozocin to mimic the T2DM-like condition. A total of 8 weeks after induction of T2DM, rats were subjected to several analyses. Besides histological examination, vascular cell adhesion molecule 1 (VCAM-1) levels were detected using immunohistochemistry (IHC) staining. Transcription of several genes such as IL-1ß, Alix, and Rab27b was calculated by real-time polymerase chain reaction assay. Using western blot analysis, intracellular CD63 levels were measured. The morphology and exosome secretion activity were assessed using acetylcholinesterase (AChE) assay and scanning electron microscopy, respectively. Histological results exhibited a moderate-to-high rate of interstitial pneumonia with emphysematous changes. IHC staining showed an increased VCAM-1 expression in the diabetic lungs compared with the normal conditions (p < .05). Likewise, we found the induction of IL-1ß, and exosome-related genes Alix and Rab27b under diabetic conditions compared with the control group (p < .05). Along with these changes, protein levels of CD63 and AChE activity were induced upon the initiation of T2DM, indicating accelerated exosome biogenesis. Taken together, current data indicated the induction of exosome biogenesis in rat pulmonary tissue affected by T2DM. It seems that the induction of inflammatory niche is touted as a stimulatory factor to accelerate exosome secretion.


Asunto(s)
Diabetes Mellitus Tipo 2 , Exosomas , Neumonía , Ratas , Animales , Diabetes Mellitus Tipo 2/metabolismo , Exosomas/metabolismo , Acetilcolinesterasa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Inflamación/metabolismo , Neumonía/metabolismo , Pulmón/metabolismo
8.
Curr Diabetes Rev ; 19(7): e031122210620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36330635

RESUMEN

Diabetes is one of the main causes of infertility, which impacts the quality of life of couples. These reproductive complications are important issues for all clinicians. The strategies for the treatment of diabetes-induced infertility are limited with the high cost and unsatisfied results. Due to the multi-directional differentiation potential and self-renewal ability of stem cells, these cells have emerged as attractive therapeutic agents in many diseases, including diabetes mellitus. We reviewed the current knowledge on the best available evidence regarding the role of stem cell transplantation in reproductive complications of diabetes.


Asunto(s)
Diabetes Mellitus , Infertilidad Masculina , Masculino , Humanos , Infertilidad Masculina/etiología , Infertilidad Masculina/terapia , Calidad de Vida , Diabetes Mellitus/terapia , Trasplante de Células Madre/efectos adversos
10.
Sci Rep ; 12(1): 12552, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869151

RESUMEN

Exposure to perinatal (prenatal and/or postnatal) stress is considered as a risk factor for metabolic disorders in later life. Accordingly, this study aimed to investigate the perinatal stress effects on the pancreatic endoplasmic reticulum (ER) stress induction, insulin secretion impairment and WFS1 (wolframin ER transmembrane Glycoprotein, which is involved in ER homeostasis and insulin secretion) expression changes, in rat offspring. According to the dams' period of exposure to variable stress, their male offspring were divided into, control (CTRL); pre-pregnancy, pregnancy, lactation stress (PPPLS); pre-pregnancy stress (PPS); pregnancy stress (PS); lactation stress (LS); pre-pregnancy, pregnancy stress (PPPS); pregnancy, lactation stress (PLS); pre-pregnancy, lactation stress (PPLS) groups. Offspring pancreases were removed for ER extraction and the assessment of ER stress biomarkers, WFS1 gene DNA methylation, and isolated islets' insulin secretion. Glucose tolerance was also tested. In the stressed groups, maternal stress significantly increased plasma corticosterone levels. In PPS, PS, and PPPS groups, maternal stress increased Bip (Hsp70; heat shock protein family A member 4), Chop (Ddit3; DNA- damage inducible transcript3), and WFS1 protein levels in pancreatic extracted ER. Moreover, the islets' insulin secretion and content along with glucose tolerance were impaired in these groups. In PPS, PS, LS and PPPS groups, the pancreatic glucocorticoid receptor (GR) expression increased. Maternal stress did not affect pancreatic WFS1 DNA methylation. Thus, maternal stress, during prenatal period, impaired the islets' insulin secretion and glucose homeostasis in adult male offspring, possibly through the induction of ER stress and GR expression in the pancreas, in this regard the role of WFS1 protein alteration in pancreatic ER should also be considered.


Asunto(s)
Insulina , Islotes Pancreáticos , Animales , Proteínas de Unión a Calmodulina/genética , Estrés del Retículo Endoplásmico , Femenino , Glucocorticoides/farmacología , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Embarazo , Ratas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Regulación hacia Arriba
11.
Hormones (Athens) ; 21(4): 625-640, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35843978

RESUMEN

PURPOSE: Growing evidence has demonstrated that adversity in early life, especially in the prenatal and postnatal period, may change the programming of numerous body systems and cause the incidence of various disorders in later life. Accordingly, this experimental animal study aimed to investigate the effect of stress exposure during perinatal (prenatal and/or postnatal) on the induction of oxidative stress in the pancreas and its effect on glucose metabolism in adult rat offspring. METHODS: In this experimental study based on maternal exposure to variable stress throughout the perinatal period, the pups were divided into eight groups, as follows: control group (C); prepregnancy, pregnancy, lactation stress group (PPPLS); prepregnancy stress group (PPS); pregnancy stress group (PS); lactation stress group (LS); prepregnancy, pregnancy stress group (PPPS); pregnancy, lactation stress group (PLS); and prepregnancy, lactation stress group (PPLS). Following an overnight fast on postnatal day (PND) 64, plasma glucose, insulin, leptin levels, and lipid profiles were evaluated in the offspring groups. GLUT-2 protein levels, lipid peroxidation, antioxidant status, and number of beta-cells in the pancreatic islets of Langerhans as well as the weights of intra-abdominal fat and adrenal glands were assessed. Levels of plasma corticosterone were determined in the different groups of mothers and offspring. RESULTS: The levels of plasma corticosterone, insulin, and HOMA-B index increased, whereas glucose level and QUICKI index were reduced in the perinatal stress groups compared to C group (p < 0.001 to p < 0.05). Plasma triglyceride, LDL, and cholesterol level rose significantly, but HDL level decreased in the perinatal stress groups compared to C group (p < 0.001 to p < 0.05). Perinatal stress raised MDA concentrations and reduced the activities of antioxidant enzymes in plasma and pancreas compared to C group (p < 0.001 to p < 0.05). GLUT-2 protein levels and number of beta-cells in the stress groups declined compared to C group (p < 0.001 to p < 0.05). Intra-abdominal fat weight decreased in the PPS, PS, and LS groups compared to C group (p < 0.001 to p < 0.01), but adrenal gland weight remained unchanged. CONCLUSION: Our results showed that long-term exposure to elevated levels of corticosterone during critical development induces metabolic syndrome in adult male rats.


Asunto(s)
Transportador de Glucosa de Tipo 2 , Enfermedades Metabólicas , Estrés Oxidativo , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Masculino , Embarazo , Ratas , Antioxidantes/metabolismo , Corticosterona , Transportador de Glucosa de Tipo 2/metabolismo , Insulina , Lactancia/metabolismo , Ratas Wistar
12.
Cardiovasc Toxicol ; 22(8): 763-770, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35687292

RESUMEN

Clinical observations have shown the risk of cardiovascular disease during asthmatic changes. Whether and how asthma causes heart failure is the subject of debate. Here, we aimed to investigate the possibility of cardiomyocyte mitophagy in a rat model of asthma. Twelve mature Wistar rats were randomly allocated into the Control and Asthmatic rats (n = 6). To induce asthma, ovalbumin was injected intraperitoneally on days 1 and 8 and procedure followed by nebulization from days 14 to 32. After 2 weeks, we performed the pathological examination of both lungs and heart using Hematoxylin-Eosin staining. Real-time PCR analysis was used to measure the expression of mitophagic factors, such as Optineurin, Pink1, and mitofusin 1 and 2. Typical changes like increased inter-alveolar septa thickness and interstitial pneumonia were evident in asthmatic lungs. In cardiac tissue, slight inflammatory response, and hydropic degeneration with an eosinophilic appearance were detected in the cytoplasm of cardiomyocytes. Real-time PCR analysis showed mitophagic response in pulmonary and cardiac tissues via upregulation of mitophagy-related genes like Optineurin and Pink-1 in asthmatic lungs and hearts compared to the control group (p < 0.05). Likewise, asthmatic changes increased the expression of genes associated with mitochondrial fusion in the lungs and heart. The expression of mitofusin1 and 2 was significantly increased following inflammatory response in pulmonary and cardiac tissues (p < 0.05). Our findings showed the expression of certain factors related to mitophagy during chronic asthmatic conditions. The findings open a new avenue in the understanding of cardiomyocyte injury during asthma.


Asunto(s)
Asma , Mitofagia , Animales , Asma/inducido químicamente , Asma/genética , Asma/metabolismo , Pulmón/metabolismo , Miocitos Cardíacos/metabolismo , Ovalbúmina/metabolismo , Ratas , Ratas Wistar
13.
Iran J Basic Med Sci ; 25(1): 96-102, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35656445

RESUMEN

Objectives: The exact role of the progenitor cell types in the dynamic healing of asthmatic lungs is lacking. This investigation was proposed to evaluate the effect of intratracheally administered rat bone marrow-derived c-kit+ cells on ovalbumin-induced sensitized male rats. Materials and Methods: Forty rats were randomly divided into 4 groups; healthy rats received phosphate-buffered saline (PBS) (C); sensitized rats received PBS (S); PBS containing C-kit- cells (S+C-kit-); and PBS containing C-kit+ cells (S+C-kit+). After two weeks, circulatory CD4+/CD8+ T-cell counts and pulmonary ERK/NF-ƙB signaling pathway as well as the probability of cellular differentiation were assessed. Results: The results showed that transplanted C-Kit+ cells were engrafted into pulmonary tissue and differentiated into epithelial cells. C-Kit+ cells could increase the number of CD4+ cells in comparison with the S group (P<0.001); however, they diminished the level of CD8+ cells (P<0.01). Moreover, data demonstrated increased p-ERK/ERK ratio (P<0.001) and NF-ƙB level (P<0.05) in sensitized rats compared with the C group. The administration of C-kit+, but not C-Kit-, decreased p-ERK/ERK ratio and NF-ƙB level compared with those of the S group (P<0.05). Conclusion: The study revealed that C-Kit+ cells engrafted into pulmonary tissue reduced the NF-ƙB protein level and diminished p-ERK/ERK ratio, leading to suppression of inflammatory response in asthmatic lungs.

14.
Adv Pharm Bull ; 12(1): 176-182, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35517882

RESUMEN

Purpose: Diabetes mellitus, especially type 2, is conceived as a devastating chronic metabolic disease globally. Due to the existence of an extensive vascular network in the pulmonary tissue, it is suggested that lungs are sensitive to the diabetic condition like other tissues. This study was designed to address the possible effect of type 2 diabetes mellitus on the promotion of pathological changes via vascular injury. Methods: Sixteen male Wistar rats were randomly allocated to the two of control and T2D groups. To induce type 2 diabetes (T2D), rats were received high-fat and a single dose of streptozotocin (STZ). On week 12, rats were euthanized and lungs samples were taken. Using hematoxylin and eosin (H&E) staining, the pathological changes were monitored. The expression of intercellular adhesion molecule (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), and interleukin 10 (IL-10) was monitored using real-time PCR assay. The level of tumor necrosis factor-α (TNF-α) was detected using ELISA assay. Nitrosative stress was monitored using the Griess assay. Results: Pathological examination in bronchoalveolar discharge revealed the existence of mild to moderate interstitial bronchopneumonia and increased neutrophilic leukocytosis compared to the control. Enhanced ICAM-1 and VCAM-1 expression and suppression of IL-10 was found using real-time PCR analysis (P < 0.05). The levels of TNF-α and NO were increased with diabetic changes compared to the control rats (P < 0.05). Conclusion: T2D could promote pulmonary tissue injury via the production of TNF-α and up-regulation of vascular ICAM-1 and VCAM-1. The inflammatory status and vascular ICAM-1 and VCAM-1 increase immune cell recruitment into the pulmonary niche.

15.
Avicenna J Phytomed ; 12(2): 109-115, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35614883

RESUMEN

Objective: Nephropathy is known to be the leading cause of kidney failure in diabetic patients. Troxerutin, as a flavonoid component, could provide a novel protective strategy in the prevention of diabetic nephropathy. A large number of reports on the salutary effects of troxerutin inspired us to investigate its effect on the nephropathy signaling events (i.e., expression of TGF-ß, miRNA192, and SIP1) in type-1 induced diabetic rats. Materials and Methods: 50 male Wistar rats were divided into 5 groups including control group, sham group treated with troxerutin for 4 weeks, diabetic group induced by streptozotocin (STZ) injection, DI group including insulin-treated diabetic animals and DT group treated with troxerutin. Ultimately, rat kidneys were extracted, and the level of miR-192 (using qPCR), transforming growth factor-beta (TGF-ß), and smad interacting protein 1 (SIP1) using an ELISA kit, was measured. Results: The level of TGF-ß and miRNA192 significantly increased in the diabetic group. However, their expression levels decreased following the administration of troxerutin and insulin (p<0.05) compared to control group. SIP1 was down-regulated in the diabetic group, whereas a spike in the expression levels was observed after troxerutin administration compared to control and troxerutin groups (p<0.05). However, no significant difference was found in the effects of insulin and troxerutin on the level of miR-192, SIP1, and TGF- ß. Conclusion: According to the previous literatures, during the progression of nephropathy, TGF-ß represses SIP1 (the repression region in the collagen gene) by increasing the expression of miR-192. Ultimately, in this study, diabetes led to up-regulation of TGF-ß while troxerutin proved to have a protective effect on the kidney by increasing SIP and lowering miR-192 levels.

16.
Life Sci ; 296: 120425, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35202642

RESUMEN

AIMS: The association between asthma and obesity has been shown but its accurate mechanism is unknown. In the current study, we sought to investigate the gene expression levels of IL-17/TRAF6/MAPK/USP25 axis and pro-inflammatory cytokine level (IL-6, IL-1ß, and TNF-α) in obese Ovalbumin (OVA)-sensitized female and male Wistar rats lung tissue. MAIN METHODS: Animals in both males and females were divided into eight groups (four groups in each sex) based on diet and OVA-sensitization: normal diet, a normal diet with OVA-sensitization, high-fat diet (HFD), and OVA-sensitization with an HFD. KEY FINDINGS: In both sexes, obese OVA-sensitized rats, the methacholine concentration-response curve shifted to the left and EC50 methacholine decreased. Increased pro-inflammatory cytokines as well as elevated IL-17/TRAF6/MAPK axis genes and decreased USP25 gene expression were identified in obese OVA-sensitized groups. SIGNIFICANCE: The results indicate that in obese OVA-sensitized rats, the IL-17 axis were involved in the pathogenesis of the disease and can be considered as a therapeutic target in subjects with obesity-related asthma.


Asunto(s)
Interleucina-17/genética , Pulmón/fisiología , Obesidad/genética , Factor 6 Asociado a Receptor de TNF/genética , Ubiquitina Tiolesterasa/genética , Animales , Peso Corporal/genética , Citocinas/genética , Citocinas/metabolismo , Femenino , Regulación de la Expresión Génica , Pulmón/fisiopatología , Masculino , Cloruro de Metacolina/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Obesidad/fisiopatología , Ovalbúmina/toxicidad , Ratas Wistar , Tráquea/efectos de los fármacos
17.
BMC Mol Cell Biol ; 23(1): 11, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35209844

RESUMEN

BACKGROUND: To circumvent some pitfalls related to acute status, chronic model of asthma is conceived to be more suitable approach to guarantee the conditions which are similar to human pulmonary disease. Here, possible therapeutic mechanisms were monitored by which c-kit+ bone marrow cells can attenuate vascular inflammation in rat model of chronic asthma. RESULTS: Data revealed c-Kit+ cells could significantly reduce pathological injures in asthmatic rats via modulating the expression of IL-4, INF-γ, ICAM-1 and VCAM-1 in lung tissues and TNF-α, IL-1ß and NO levels in BALF (p < 0.001 to p < 0.05). Besides, c-Kit+ cells reduced increased levels of VCAM-1 evaluated by immunohistochemistry staining. In contrast to c-Kit+ cells, c-Kit- cells could not exert beneficial effects in the asthmatic conditions. CONCLUSION: Overall, we found that systemic administration of C-kit positive cells can diminish pulmonary and vascular inflammation of chronic asthmatic changes in a rat model. These cells are eligible to suppress inflammation and nitrosative stress in lung tissue coincides with the reduction of pathological changes. These data indicate that C-kit positive cells be used as an alternative cell source for the amelioration of asthmatic changes.


Asunto(s)
Asma , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Células de la Médula Ósea/metabolismo , Inflamación/metabolismo , Pulmón/metabolismo , Pulmón/patología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Ratas
18.
Mol Biol Rep ; 49(5): 3721-3728, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35118570

RESUMEN

BACKGROUND: Asthma, an inflammatory illness of the lungs, remains the most common long-term disease amongst children. This study tried to elaborate the status of apoptosis in asthmatic pulmonary niche after the application of rat mesenchymal stem cells (MSC-CM)-derived secretome. METHODS AND RESULTS: Here, we randomly allocated male Wistar rats into three groups (n = 8); Control animals were intratracheally given 50 µl vehicle. In control-matched sensitized rats, 50 µl normal saline was used. In the last group, 50 µl MSC-CM was applied. Two-week post-administration, transcription of T-bet, GATA-3, Bax, Bcl-2 and Caspase-3 was measured by gene expression analysis. Pathological injuries were monitored using H&E staining. The BALF level of TNF-α was measured using ELISA assay. In asthmatic rats received MSC-CM, the expression of T-bet was increased while the level of GATA-3 decreased compared to the S group (p < 0.05). Levels of BALF TNF-α were suppressed in asthmatic niche after MSC-CM administration (p < 0.05). Compared to the asthmatic group, MSC-CM had potential to alter the expression of apoptosis-related genes in which the expression of Bax and Caspase 3 was decreased and the expression of pro-survival factor, Bcl-2 increased (p < 0.05). CONCLUSION: Our data notified the potency of direct administration of MSC-CM in the alleviation of airway inflammation, presumably by down regulating apoptotic death in pulmonary niche.


Asunto(s)
Asma , Células Madre Mesenquimatosas , Animales , Apoptosis , Asma/metabolismo , Medios de Cultivo Condicionados/farmacología , Pulmón/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
19.
Horm Mol Biol Clin Investig ; 43(2): 235-247, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34931507

RESUMEN

Over the past decades, obesity and infertility in men increased in parallel, and the association between both phenomena have been examined by several researchers. despite the fact that there is no agreement, obesity appears to affect the reproductive potential of men through various mechanisms, such as changes in the hypothalamic-pituitary-testicular (HPT) axis, spermatogenesis, sperm quality and/or alteration of sexual health. Leptin is a hormone produced by the adipose tissue, and its production elevates with increasing body fat. Many studies have supported the relationship between raised leptin production and reproductive function regulation. In fact, Leptin acts on the HPT axis in men at all levels. However, most obese men are insensitive to increased production of endogenous leptin and functional leptin resistance development. Recently, it has been recommended that Kisspeptin neurons mediate the leptin's effects on the reproductive system. Kisspeptin binding to its receptor on gonadotropin-releasing hormone (GnRH) neurons, activates the mammal's reproductive axis and stimulates GnRH release. Increasing infertility associated with obesity is probably mediated by the Kisspeptin-GnRH pathway. In this review, the link between obesity, kisspeptin, leptin, and male fertility will be discussed.


Asunto(s)
Fertilidad , Kisspeptinas , Leptina , Obesidad , Humanos , Masculino , Hormona Liberadora de Gonadotropina , Kisspeptinas/metabolismo , Leptina/metabolismo , Obesidad/metabolismo , Semen/metabolismo , Infertilidad Masculina
20.
Cell Biochem Funct ; 39(6): 821-827, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34227133

RESUMEN

The emergence of an inflammatory condition such as asthma could affect the therapeutic potential of stem cells. Synopsis of previous documents yielded controversial outcomes, leading to a limitation of stem cell-based therapy in the clinical setting. This study aimed to assess the impact of asthmatic serum on the MSCs aging and dynamic growth in vitro. Rats were divided into control and asthmatic groups randomly. The asthmatic change was induced using OVA sensitization. The asthmatic structural changes are monitored by conventional Haematoxylin-Eosin staining. Thereafter, blood samples were taken and sera provided from each group. In this study, primary bone marrow mesenchymal stem cells were cultured in culture medium supplemented with normal and asthmatic serum for 7 days. The MSCs viability was examined using the MTT assay. The expression of the aging-related gene (ß-galactosidase), and stemness-related markers such as Sox2, Kfl-4 and p16INK4a were analysed by real-time PCR assay. Histological examination revealed chronic inflammatory remodelling which is identical to asthmatic changes. MTT assay showed a reduction of mesenchymal stem cell viability compared to the control group (P < .05). Real-time PCR analysis revealed a down-regulation of stemness-related markers Sox2, Kfl-4 and p16INK4a coincided with aging changes (ß-galactosidase) compared to the control group (P < .05). These data show the detrimental effect of asthmatic condition on bone marrow regenerative potential by accelerating early-stage aging in different stem cells and further progenitor cell depletion. SIGNIFICANCE OF THE STUDY: In such inflammatory conditions as asthma, the therapeutic potential of stem cells may be altered. We demonstrate that serum from asthmatic rats had the potential to reduce the viability of mesenchymal stem cells in vitro. Furthermore, we observed that the expression of the aging-related gene known ß-galactosidase was statistically increased in cells co-cultured with asthmatic serum. At the same time, expression of stemness-related markers Sox2, Kfl-4 and p16INK4a down-regulated. These results support the damaging effect of asthmatic condition on bone marrow regenerative ability by inducing early-stage aging in stem cells and additional progenitor cell reduction.


Asunto(s)
Asma/metabolismo , Células Madre Mesenquimatosas/metabolismo , Factores de Edad , Animales , Asma/patología , Enfermedad Crónica , Citometría de Flujo , Masculino , Células Madre Mesenquimatosas/patología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...