Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Heliyon ; 10(12): e33052, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39021957

RESUMEN

The Food and Drug Administration (FDA) has approved vorinostat, also called Zolinza®, for its effectiveness in fighting cancer. This drug is a suberoyl-anilide hydroxamic acid belonging to the class of histone deacetylase inhibitors (HDACis). Its HDAC inhibitory potential allows it to accumulate acetylated histones. This, in turn, can restore normal gene expression in cancer cells and activate multiple signaling pathways. Experiments have proven that vorinostat induces histone acetylation and cytotoxicity in many cancer cell lines, increases the level of p21 cell cycle proteins, and enhances pro-apoptotic factors while decreasing anti-apoptotic factors. Additionally, it regulates the immune response by up-regulating programmed death-ligand 1 (PD-L1) and interferon gamma receptor 1 (IFN-γR1) expression, and can impact proteasome and/or aggresome degradation, endoplasmic reticulum function, cell cycle arrest, apoptosis, tumor microenvironment remodeling, and angiogenesis inhibition. In this study, we sought to elucidate the precise molecular mechanism by which Vorinostat inhibits HDACs. A deeper understanding of these mechanisms could improve our understanding of cancer cell abnormalities and provide new therapeutic possibilities for cancer treatment.

2.
Phytother Res ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023299

RESUMEN

Myocardial infarction (MI) is considered one of the most common cardiac diseases and major cause of death worldwide. The prevalence of MI and MI-associated mortality have been increasing in recent years due to poor lifestyle habits viz. residency, obesity, stress, and pollution. Synthetic drugs for the treatment of MI provide good chance of survival; however, the demand to search more safe, effective, and natural drugs is increasing. Plants provide fruitful sources for powerful antioxidant and anti-inflammatory agents for prevention and/or treatment of MI. However, many plant extracts lack exact information about their possible dosage, toxicity and drug interactions which may hinder their usefulness as potential treatment options. Phytoconstituents play cardioprotective role by either acting as a prophylactic or adjuvant therapy to the concurrently used synthetic drugs to decrease the dosage or relief the side effects of such drugs. This review highlights the role of different herbal formulations, examples of plant extracts and types of several isolated phytoconstituents (phenolic acids, flavonoids, stilbenes, alkaloids, phenyl propanoids) in the prevention of MI with reported activities. Moreover, their possible mechanisms of action are also discussed to guide future research for the development of safer substitutes to manage MI.

3.
Discov Oncol ; 15(1): 282, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008141

RESUMEN

This study on Buddleja polystachya highlights its phytochemical composition, antimicrobial activity, and cytotoxic impacts. The study emphasizes the plant's potential to treat ocular diseases by identifying important compounds involved in the bioactivity through GC-MS analysis. This study explores the antimicrobial and cytotoxic potential of Buddleja polystachya (stem and leaves) extracts, with a focus on their application in treating bacterial ocular infections and their efficacy against MCF7, HT29, and HepG2 cancer cells. Through comprehensive GC-MS analysis, a diverse array of phytochemicals was identified within Buddleja polystachya stem and leaves extracts, including carbohydrates, phenolic derivatives, fatty acids, and steroidal components. The extracts were then evaluated for their biological activities, revealing significant antimicrobial properties against a range of bacterial strains implicated in ocular infections. The research findings demonstrate that stem extracts derived from Buddleja polystachya demonstrated high to moderate cytotoxic effects on cancer cell lines MCF7, HT29, and HepG2. Notably, these effects were characterized by varying IC50 values, which suggest distinct levels of sensitivity. In contrast, leaf extracts exhibited reduced cytotoxicity when tested against all these cell lines, although they did so with a significantly higher cytotoxicity aganist HepG2 cells. The results of this investigation highlight the potential therapeutic utilization of Buddleja polystachya extracts in the management of ocular infections and cancer. These results support the need for additional research to elucidate the underlying mechanisms of action of these extracts and explore their potential as drugs.

4.
Biomed Pharmacother ; 177: 117072, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38991301

RESUMEN

The development of natural substances derived from nature poses a significant challenge as technologies for the extraction and characterization of active principles advance. Hispolon has received a lot of attention in recent years, ascribable to its wide range of biological activities. It is a phenolic molecule that was extracted from several mushroom species such as Phellinus igniarius, Phellinus linteus, Phellinus lonicerinus, Phellinus merrillii, and Inonotus hispidus. To provide a comprehensive overview of the pharmacological activities of hispolon, this review highlights its anticancer, anti-inflammatory, antioxidant, antibacterial, and anti-diabetic activities. Several scientific research databases, including Google Scholar, Web of Science, PubMed, SciFinder, SpringerLink, Science Direct, Scopus, and, Wiley Online were used to gather the data on hispolon until May 2024. The in vitro and in vivo studies have revealed that hispolon exhibited significant anticancer properties through modifying several signaling pathways including cell apoptosis, cycle arrest, autophagy, and inhibition of angiogenesis and metastasis. Hispolon's antimicrobial activity was proven against many bacterial, fungal, and viral pathogens, highlighting its potential use as a novel antimicrobial agent. Additionally, hispolon displayed potent anti-inflammatory activity through the suppression of key inflammatory mediators, such as inducible NO synthase (iNOS), tumor necrosis factor-α (TNF-α), and cyclooxygenases-2 (COX-2), and the modulation of mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways. The antioxidant potential of hispolon was attributed to its capacity to neutralize reactive oxygen species (ROS) and to increase the activity of antioxidant enzymes, indicating a possible involvement in the prevention of oxidative stress-related illnesses. Hispolon's antidiabetic activity was associated with the inhibition of aldose reductase and α-glucosidase. Studies on hispolon emphasized its potential use as a promising scaffold for the development of novel therapeutic agents targeting various diseases, including cancer, infectious diseases, inflammatory disorders, and diabetes.

5.
Curr Pharm Des ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38867533

RESUMEN

BACKGROUND: Cocrystals are an efficient way for the delivery of low soluble drugs but when dissolved they rapidly disproportionate. To formulate the cocrystals in tablets, cocrystals must be stabilized. In this study ibuprofen-nicotinamide (IBU-NIC) cocrystals were synthesized initially by slow solvent evaporation and for bulk production by fast solvent evaporation techniques. METHOD: The cocrystals were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectrophotometer (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and optical microscopy. The ibuprofen cocrystals showed greater solubility compared to the parent drug. RESULT: Intrinsic dissolution data was utilized for efficacious screening of tablet formulations. Using hydrophilic polymers at a ratio of 6:1 (polymer to IBU-NIC cocrystal ratio), hydroxypropyl methylcellulose (F1), polyvinylpyrrolidone (PVP) K-30 (F2) and PVP K-90 (F3), three tablet formulations were prepared that stabilized cocrystals during dissolution. The drug release profiles after 60 minutes from formulations F1 (92.30), F2 (98.54), F3 (99.88) were all higher compared to the marketed brand BRUFEN® F, (79.61%) in a simulated intestinal media (p<0.001). CONCLUSION: Significant increase in the dissolution rate of cocrystal was observed with no phase change in all formulations.

6.
Int J Pharm ; : 124403, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944167

RESUMEN

Nanotechnology-based drug delivery systems, including siRNA, present an innovative approach to treating breast cancer, which disproportionately affects women. These systems enable personalized and targeted therapies, adept at managing drug resistance and minimizing off-target effects. This review delves into the current landscape of nanotechnology-derived siRNA transport systems for breast cancer treatment, discussing their mechanisms of action, preclinical and clinical research, therapeutic applications, challenges, and future prospects. Emphasis is placed on the importance of targeted delivery and precise gene silencing in improving therapeutic efficacy and patient outcomes. The review addresses specific hurdles such as specificity, biodistribution, immunological reactions, and regulatory approval, offering potential solutions and avenues for future research. SiRNA drug delivery systems hold promise in revolutionizing cancer care and improving patient outcomes, but realizing their full potential necessitates ongoing research, innovation, and collaboration. Understanding the intricacies of siRNA delivery mechanisms is pivotal for designing effective cancer treatments, overcoming challenges, and advancing siRNA-based therapies for various diseases, including cancer. The article provides a comprehensive review of the methods involved in siRNA transport for therapeutic applications, particularly in cancer treatment, elucidating the complex journey of siRNA molecules from extracellular space to intracellular targets. Key mechanisms such as endocytosis, receptor-mediated uptake, and membrane fusion are explored, alongside innovative delivery vehicles and technologies that enhance siRNA delivery efficiency. Moreover, the article discusses challenges and opportunities in the field, including issues related to specificity, biodistribution, immune response, and clinical translation. By comprehending the mechanisms of siRNA delivery, researchers can design and develop more effective siRNA-based therapies for various diseases, including cancer.

7.
Biomed Pharmacother ; : 116886, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38945700

RESUMEN

Colorectal cancer (CRC) is one of the most significant forms of human cancer. It is characterized by its heterogeneity because several molecular factors are involved in contiguity and can link it to others without having a linear correlation. Among the factors influencing tumor transformation in CRC, transforming growth factor-beta (TGF-ß) plays a key promoter role. This factor is associated with human colorectal tumors with a very high prognosis: it increases the survival, invasion, and metastasis of CRC cells, thus functioning as an oncogene. The inhibition of this factor can constitute a major therapeutic route for CRC treatment. Various chemical drugs including synthetic molecules and biotherapies have been developed as TGF-ß inhibitors. Moreover, the scientific community has recently shown a major interest in screening natural drugs inhibiting TGF-ß in CRC. In this context, we carried out this review article using computerized databases, such as PubMed, Google Scholar, Springer Link, Science Direct, Cochrane Library, Embase, Web of Science, and Scopus, to highlight the molecular mechanism of TGF-ß in CRC induction and progression and current advances in the pharmacodynamic effects of natural bioactive substances targeting TGF-ß in CRC.

8.
Sci Rep ; 14(1): 12588, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822113

RESUMEN

The COVID-19 has had a significant influence on people's lives across the world. The viral genome has undergone numerous unanticipated changes that have given rise to new varieties, raising alarm on a global scale. Bioactive phytochemicals derived from nature and synthetic sources possess lot of potential as pathogenic virus inhibitors. The goal of the recent study is to report new inhibitors of Schiff bases of 1,3-dipheny urea derivatives against SARS COV-2 spike protein through in-vitro and in-silico approach. Total 14 compounds were evaluated, surprisingly, all the compounds showed strong inhibition with inhibitory values between 79.60% and 96.00% inhibition. Here, compounds 3a (96.00%), 3d (89.60%), 3e (84.30%), 3f (86.20%), 3g (88.30%), 3h (86.80%), 3k (82.10%), 3l (90.10%), 3m (93.49%), 3n (85.64%), and 3o (81.79%) exhibited high inhibitory potential against SARS COV-2 spike protein. While 3c also showed significant inhibitory potential with 79.60% inhibition. The molecular docking of these compounds revealed excellent fitting of molecules in the spike protein receptor binding domain (RBD) with good interactions with the key residues of RBD and docking scores ranging from - 4.73 to - 5.60 kcal/mol. Furthermore, molecular dynamics simulation for 150 ns indicated a strong stability of a complex 3a:6MOJ. These findings obtained from the in-vitro and in-silico study reflect higher potency of the Schiff bases of 1,3-diphenyl urea derivatives. Furthermore, also highlight their medicinal importance for the treatment of SARS COV-2 infection. Therefore, these small molecules could be a possible drug candidate.


Asunto(s)
Antivirales , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2 , Bases de Schiff , Glicoproteína de la Espiga del Coronavirus , Urea , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Bases de Schiff/química , Bases de Schiff/farmacología , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Urea/farmacología , Urea/análogos & derivados , Urea/química , Humanos , Tratamiento Farmacológico de COVID-19 , COVID-19/virología
9.
Integr Cancer Ther ; 23: 15347354241256649, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38819027

RESUMEN

BACKGROUND: Metastatic secondary ocular tumors spread from systemic malignancies, including breast cancer. This study aimed to evaluate the cytotoxicity of extracts from 5 medicinal plants native to Saudi Arabia. METHODS: For preliminary activity screening, cytotoxicity using the MTT assay and selectivity index determinations were made for medicinal plant extracts against various cancer cell-lines. The most promising extract was subjected to GC-MS analysis to determine the phytochemical composition. Clonogenic assays were performed using the most promising extract to confirm the initial results. Finally, western blot analysis was used to determine the modulation in expression of survivin and P27 suppressor genes in the human breast adenocarcinoma (MCF7) cell-line to understand the potential mechanistic properties of the active plant extract. RESULTS: The 5 plant extracts showed various cytotoxic activity levels using IC50. The most active extract was found to be the leaves of Capparis spinosa L. (BEP-07 extract) against the MCF7 breast cancer cell-line (IC50 = 3.61 ± 0.99 µg/ml) and selectivity index of 1.17 compared to the normal human fetal lung fibroblast (MRC5) cells. BEP-07 extract showed a dose dependent clonogenic effect against the MCF7 colonies which was comparable with the effect of doxorubicin. BEP-07 extract caused a significant decrease of survivin and increase in P27 expression compared to control GAPDH at its highest dose (14 µg/ml). The GC-MS chromatogram of Capparis spinosa L. (BEP-07 extract) revealed the existence of 145 compounds, belonging to the diverse classes of phytoconstituents. Fatty acids and their derivatives represent 15.4%, whilst octadecanoic acid, 2,3-dihydroxypropyl ester was the principal component (7.9%) detected. CONCLUSION: Leaves of Capparis spinosa L. (BEP-07 extract) exhibited a significant cytotoxic effect particularly against breast cancer cells. It exhibited this effect through survivin inhibition and via P27 upregulation. The detected phytoconstituents in the plant extract might be involved in tested cytotoxic activity, while further investigations are required to complete the drug candidate profile.


Asunto(s)
Extractos Vegetales , Plantas Medicinales , Humanos , Arabia Saudita , Extractos Vegetales/farmacología , Plantas Medicinales/química , Células MCF-7 , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Survivin/metabolismo , Antineoplásicos Fitogénicos/farmacología , Cromatografía de Gases y Espectrometría de Masas/métodos , Fitoquímicos/farmacología
10.
Heliyon ; 10(9): e30547, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726163

RESUMEN

The present article describes the muscle relaxant and antipyretic effects of pentacyclic triterpenes, oleanolic acid (OA), ursolic acid (UA) and betulinic acid (BA) isolated from roots of Diospyros lotus in animal models. The muscle relaxant effects of isolated pentacyclic triterpenes were determined by chimney and inclined plane tests. In the chimney test, pretreatment of pentacyclic triterpenes evoked significant dose dependent influence on muscle coordination. When administered intraperitoneally (i.p.) to mice at 10 mg/kg for 90 min, OA, UA, and BA exhibited muscle relaxant effects of 66.72 %, 60.21 %, and 50.77 %, respectively. Similarly, OA, UA, and BA (at 10 mg/kg) illustrated 65.74 %, 59.84 % and 51.40 % muscle relaxant effects in the inclined plane test. In the antipyretic test, significant amelioration was caused by pretreatment of all compounds in dose dependent manner. OA, UA, and BA (at 5 mg/kg) showed 39.32 %, 34.32 % and 29.99 % anti-hyperthermic effects, respectively 4 h post-treatment, while at 10 mg/kg, OA, UA, and BA exhibited 71.59 %, 60.99 % and 52.44 % impact, respectively. The muscle relaxant effect of benzodiazepines is well known for enhancement of GABA receptors. There may exist a similar mechanism for muscle relaxant effect of pentacyclic triterpenes. The in-silico predicted binding pattern of all the compounds reflects good affinity of compounds with GABAA receptor and COX-2. These results indicate that the muscle relaxant and antipyretic activities of these molecules can be further improved by structural optimization.

11.
Heliyon ; 10(9): e29718, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694079

RESUMEN

Diabetes is a complex disease that affects a large percentage of the world's population, and it is associated with several risk factors. Self-management poses a significant challenge, but natural sources have shown great potential in providing effective glucose reducing solutions. Flavonoids, a class of bioactive substances found in different natural sources including medicinal plants, have emerged as promising candidates in this regard. Indeed, several flavonoids, including apigenin, arbutin, catechins, and cyanidin, have demonstrated remarkable anti-diabetic properties. The clinical effectiveness of these flavonoids is linked to their potential to decrease blood glucose concentration and increase insulin concentration. Thus, the regulation of certain metabolic pathways such as glycolysis and neoglycogenesis has also been demonstrated. In vitro and in vivo investigations revealed different mechanisms of action related to flavonoid compounds at subcellular, cellular, and molecular levels. The main actions reside in the activation of glycolytic signaling pathways and the inhibition of signaling that promotes glucose synthesis and storage. In this review, we highlight the clinical efficiency of natural flavonoids as well as the molecular mechanisms underlying this effectiveness.

12.
Nat Prod Bioprospect ; 14(1): 27, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722432

RESUMEN

Until recently, the main pharmaceuticals used to control cholesterol and prevent cardiovascular disease (CVD) were statin-related drugs, known for their historical side effects. Therefore, there is growing interest in exploring alternatives, such as nutritional and dietary components, that could play a central role in CVD prevention. This review aims to provide a comprehensive understanding of how natural phytosterols found in various diets combat CVDs. We begin with a description of the overall approach, then we explore in detail the different direct and indirect mechanisms that contribute to reducing cardiovascular incidents. Phytosterols, including stigmasterol, ß-sitosterol, ergosterol, and fucosterol, emerge as promising molecules within nutritional systems for protection against CVDs due to their beneficial effects at different levels through direct or indirect cellular, subcellular, and molecular mechanisms. Specifically, the mentioned phytosterols exhibit the ability to diminish the generation of various radicals, including hydroperoxides and hydrogen peroxide. They also promote the activation of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione, while inhibiting lipid peroxidation through the activation of Nrf2 and Nrf2/heme oxygenase-1 (HO-1) signaling pathways. Additionally, they demonstrate a significant inhibitory capacity in the generation of pro-inflammatory cytokines, thus playing a crucial role in regulating the inflammatory/immune response by inhibiting the expression of proteins involved in cellular signaling pathways such as JAK3/STAT3 and NF-κB. Moreover, phytosterols play a key role in reducing cholesterol absorption and improving the lipid profile. These compounds can be used as dietary supplements or included in specific diets to aid control cholesterol levels, particularly in individuals suffering from hypercholesterolemia.

13.
Phytother Res ; 38(7): 3370-3400, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38655878

RESUMEN

Gout, or hyperuricemia is a multifactorial and multi-faceted metabolic disease that is quite difficult to manage and/or treat. Conventional therapies such as non-steroidal anti-inflammatory drugs (NSAIDs) such as allopurinol, corticosteroids and colchicine amongst others, have helped in its management and treatment to some extent. This study aimed to compile and analyze the different herbal remedies used in the management of hyperuricemia and gout. A literature search was conducted from key databases (PubMed, ScienceDirect, Cochrane Library, Google Scholar) using relevant keywords via the PRISMA model. Smilax riparia A.DC. from Traditional Chinese Medicine is used in many countries for its therapeutic effect on lowering serum urate levels. No single study was able to establish the efficacy of a specific traditionally used herb via in vitro, in vivo, and clinical studies. Patients were found to use a panoply of natural remedies, mainly plants to treat hyperuricemia and gout, which have been validated to some extent by in vitro, in vivo, and clinical studies. Nonetheless, further research is needed to better understand the ethnopharmacological relationship of such herbal remedies.


Asunto(s)
Gota , Hiperuricemia , Hiperuricemia/tratamiento farmacológico , Gota/tratamiento farmacológico , Humanos , Animales , Fitoterapia , Smilax/química , Medicina Tradicional China/métodos , Medicamentos Herbarios Chinos/uso terapéutico , Ácido Úrico/sangre , Extractos Vegetales/uso terapéutico , Extractos Vegetales/farmacología , Plantas Medicinales/química
14.
Chem Biodivers ; 21(6): e202400402, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38573028

RESUMEN

Gastrodin, a bioactive compound derived from the rhizome of the orchid Gastrodia elata, exhibits a diverse range of biological activities. With documented neuroprotective, anti-inflammatory, antioxidant, anti-apoptotic, and anti-tumor effects, gastrodin stands out as a multifaceted therapeutic agent. Notably, it has demonstrated efficacy in protecting against neuronal damage and enhancing cognitive function in animal models of Alzheimer's disease, Parkinson's disease, and cerebral ischemia. Additionally, gastrodin showcases immunomodulatory effects by mitigating inflammation and suppressing the expression of inflammatory cytokines. Its cytotoxic activity involves the inhibition of angiogenesis, suppression of tumor growth, and induction of apoptosis. This comprehensive review seeks to elucidate the myriad potential effects of Gastrodin, delving into the intricate molecular mechanisms underpinning its pharmacological properties. The findings underscore the therapeutic potential of gastrodin in addressing various conditions linked to neuroinflammation and cancer.


Asunto(s)
Alcoholes Bencílicos , Glucósidos , Fármacos Neuroprotectores , Alcoholes Bencílicos/farmacología , Alcoholes Bencílicos/química , Glucósidos/farmacología , Glucósidos/química , Humanos , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Gastrodia/química , Antioxidantes/farmacología , Antioxidantes/química , Apoptosis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo
15.
ACS Omega ; 9(12): 13803-13817, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559912

RESUMEN

This study assessed the efficacy of adsorption for eliminating the agricultural pesticide cypermethrin (CP) from wastewater using various adsorbents: silica, malachite, and magnetite. Magnetic nanocomposites (NCs) (with varying amounts of Fe3O4 0.1, 0.25, 0.5, 1.0, and 1.5 wt/wt %) were synthesized, including Fe3O4 nanoparticles (NPs), bicomposites, and tricomposites, calcined at 300 and 500 °C, and then tested for CP removal. The study was conducted in two phases, with the objective of initially assessing how effectively each individual NP performed and then evaluating how effectively the NCs performed when used for the adsorption of CP. Notably, the Fe3O4-malachite combination exhibited superior CP removal, with the 0.25-Fe-M NC achieving the highest adsorption at 635.4 mg/g. This success was attributed to the large surface area, magnetic properties of Fe3O4, and adsorption capabilities of malachite. The Brunauer-Emmett-Teller (BET) isotherm analysis indicated that the NCs had potential applications in adsorption and separation processes. The scanning electron microscopy and transmission electron microscopy revealed the spherical, irregular shaped morphology of the synthesized NPs and NCs. However, the X-ray diffraction (XRD) pattern of surface functionalized materials such as surface functionalized malachite [Cu2CO3(OH)2] with Fe3O4 and SiO2 may be complicated by the specific functionalization method used and the relative amounts and crystallographic orientations of each component. Therefore, careful interpretation and analysis of the XRD pattern, along with other techniques, are necessary for accurate identification and characterization of the functionalized material. The originality of this study lies in its comprehensive investigation of several adsorbents and NCs for CP removal at neutral pH. The innovation stems from the synergistic action of Fe3O4 and malachite, which results in improved CP removal due to their combined surface properties and magnetic characteristics. The application of magnetic NCs in adsorption and separation, as validated by BET isotherm analysis, highlights the potential breakthrough in addressing pesticide contamination.

16.
RSC Adv ; 14(16): 10978-10994, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38577436

RESUMEN

In recent years, polyhydroquinolines have gained much attention due to their widespread applications in medicine, agriculture, industry, etc. Here, we synthesized a series of novel hydrazone-based polyhydroquinoline derivatives via multi-step reactions. These molecules were characterized by modern spectroscopic techniques (1H-NMR, 13C NMR, and LC-HRMS) and their antibacterial and in vitro α-glucosidase inhibitory activities were assessed. Compound 8 was found to be the most active inhibitor against Listeria monocytogenes NCTC 5348, Bacillus subtilis IM 622, Brevibacillus brevis, and Bacillus subtilis ATCC 6337 with a zone of inhibition of 15.3 ± 0.01, 13.2 ± 0.2, 13.1 ± 0.1, and 12.6 ± 0.3 mm, respectively. Likewise, compound 8 also exhibited the most potent inhibitory potential for α-glucosidase (IC50 = 5.31 ± 0.25 µM) in vitro, followed by compounds 10 (IC50 = 6.70 ± 0.38 µM), and 12 (IC50 = 6.51 ± 0.37 µM). Furthermore, molecular docking and DFT analysis of these compounds showed good agreement with experimental work and the nonlinear optical properties calculated here indicate that these compounds are good candidates for nonlinear optics.

17.
Curr Med Chem ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38591207

RESUMEN

BACKGROUND/AIM: The global pandemic caused by the novel SARS-CoV-2 virus underscores the urgent need for therapeutic interventions. Targeting the virus's main protease (Mpro), crucial for viral replication, is a promising strategy. OBJECTIVE: The current study aims to discover novel inhibitors of Mpro. METHODS: The current study identified five natural compounds (myrrhanol B (C1), myrrhanone B (C2), catechin (C3), quercetin (C4), and feralolide (C5) with strong inhibitory potential against Mpro through virtual screening and computational methods, predicting their binding efficiencies and validated it using the in-vitro inhibition activity. The selected compound's toxicity was examined using the MTT assay on a human BJ cell line. RESULTS: Compound C1 exhibited the highest binding affinity, with a docking score of -9.82 kcal/mol and strong hydrogen bond interactions within Mpro's active site. A microscale molecular dynamics simulation confirmed the stability and tight fit of the compounds in the protein's active pocket, showing superior binding interactions. in vitro assays validated their inhibitory effects, with C1 having the most significant potency (IC50 = 2.85 µM). The non-toxic nature of these compounds in human BJ cell lines was also confirmed, advocating their safety profile. CONCLUSION: These findings highlight the effectiveness of combining computational and experimental approaches to identify potential lead compounds for SARS-CoV-2, with C1-C5 emerging as promising candidates for further drug development against this virus.

18.
Curr Med Chem ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38616761

RESUMEN

BACKGROUND/AIM: Glioblastoma is an extensively malignant neoplasm of the brain that predominantly impacts the human population. To address the challenge of glioblastoma, herein, we have searched for new drug-like candidates by extensive computational and biochemical investigations. METHOD: Approximately 950 compounds were virtually screened against the two most promising targets of glioblastoma, i.e., epidermal growth factor receptor (EGFR) and phosphoinositide 3-kinase (PI3K). Based on highly negative docking scores, excellent binding capabilities and good pharmacokinetic properties, eight and seven compounds were selected for EGFR and PI3K, respectively. RESULTS: Among those hits, four natural products (SBEH-40, QUER, QTME-12, and HCFR) exerted dual inhibitory effects on EGFR and PI3K in our in-silico analysis; therefore, their capacity to suppress the cell proliferation was assessed in U87 cell line (type of glioma cell line). The compounds SBEH-40, QUER, andQTME-12 exhibited significant anti-proliferative capability with IC50 values of 11.97 ± 0.73 µM, 28.27 ± 1.52 µM, and 22.93 ± 1.63 µM respectively, while HCFR displayed weak inhibitory potency (IC50 = 74.97 ± 2.30 µM). CONCLUSION: This study has identified novel natural products that inhibit the progression of glioblastoma; however, further examinations of these molecules are required in animal and tissue models to better understand their downstream targeting mechanisms.

19.
Curr Top Med Chem ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685780

RESUMEN

Berbamine (Ber) is an active medicinal bisbenzylisoquinoline alkaloid, which is usually obtained from different plants of the genus Berberis (family Berberidaceae) and is used to cure various disorders in traditional Chinese and Ayurvedic systems of medicine. Numerous in-vitro and in-vivo studies revealed the apoptotic and cytotoxic potential of Ber against different cell lines (SMMC-7721, A549, MDA-MB-231, and K562) by upregulating pro-apoptotic (Bax, p53) and downregulating anti-apoptotic (Bcl-2, survivin) proteins. Other pharmacological attributes ascribed to Ber included cardioprotective, anti-diabetic, anti-inflammatory, antimalarial, antioxidant, anti-hypercholesterolemic, and anti-allergic. Moreover, the synergistic effect of Ber improved the therapeutic potential of different drugs (paclitaxel (PTL), gemcitabine, dexamethasone, doxorubicin (DOX), and celecoxib) in different models. Various attempts could fabricate biologically active derivatives of Ber, such as 4-chlorobenzoyl berbamine (CBB) and O-4- ethoxyl-butyl-berbamine (EBB). The review focuses on the medicinal applications of Ber, particularly anti-cancer, cardioprotective, and anti-inflammatory, along with the mechanism of action.

20.
BMC Chem ; 18(1): 76, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637900

RESUMEN

Nod-like receptor protein 3 (NLRP-3), is an intracellular sensor that is involved in inflammasome activation, and the aberrant expression of NLRP3 is responsible for diabetes mellitus, its complications, and many other inflammatory diseases. NLRP3 is considered a promising drug target for novel drug design. Here, a pharmacophore model was generated from the most potent inhibitor, and its validation was performed by the Gunner-Henry scoring method. The validated pharmacophore was used to screen selected compounds databases. As a result, 646 compounds were mapped on the pharmacophore model. After applying Lipinski's rule of five, 391 hits were obtained. All the hits were docked into the binding pocket of target protein. Based on docking scores and interactions with binding site residues, six compounds were selected potential hits. To check the stability of these compounds, 100 ns molecular dynamic (MD) simulations were performed. The RMSD, RMSF, DCCM and hydrogen bond analysis showed that all the six compounds formed stable complex with NLRP3. The binding free energy with the MM-PBSA approach suggested that electrostatic force, and van der Waals interactions, played a significant role in the binding pattern of these compounds. Thus, the outcomes of the current study could provide insights into the identification of new potential NLRP3 inflammasome inhibitors against diabetes and its related disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...