Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37688060

RESUMEN

Dynamic consent management allows a data subject to dynamically govern her consent to access her data. Clearly, security and privacy guarantees are vital for the adoption of dynamic consent management systems. In particular, specific data protection guarantees can be required to comply with rules and laws (e.g., the General Data Protection Regulation (GDPR)). Since the primary instantiation of the dynamic consent management systems in the existing literature is towards developing sustainable e-healthcare services, in this paper, we study data protection issues in dynamic consent management systems, identifying crucial security and privacy properties and discussing severe limitations of systems described in the state of the art. We have presented the precise definitions of security and privacy properties that are essential to confirm the robustness of the dynamic consent management systems against diverse adversaries. Finally, under those precise formal definitions of security and privacy, we have proposed the implications of state-of-the-art tools and technologies such as differential privacy, blockchain technologies, zero-knowledge proofs, and cryptographic procedures that can be used to build dynamic consent management systems that are secure and private by design.

2.
Sensors (Basel) ; 22(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36236363

RESUMEN

In this paper, a secure energy trading mechanism based on blockchain technology is proposed. The proposed model deals with energy trading problems such as insecure energy trading and inefficient charging mechanisms for electric vehicles (EVs) in a vehicular energy network (VEN). EVs face two major problems: finding an optimal charging station and calculating the exact amount of energy required to reach the selected charging station. Moreover, in traditional trading approaches, centralized parties are involved in energy trading, which leads to various issues such as increased computational cost, increased computational delay, data tempering and a single point of failure. Furthermore, EVs face various energy challenges, such as imbalanced load supply and fluctuations in voltage level. Therefore, a demand-response (DR) pricing strategy enables EV users to flatten load curves and efficiently adjust electricity usage. In this work, communication between EVs and aggregators is efficiently performed through blockchain. Moreover, a branching concept is involved in the proposed system, which divides EV data into two different branches: a Fraud Chain (F-chain) and an Integrity Chain (I-chain). The proposed branching mechanism helps solve the storage problem and reduces computational time. Moreover, an attacker model is designed to check the robustness of the proposed system against double-spending and replay attacks. Security analysis of the proposed smart contract is also given in this paper. Simulation results show that the proposed work efficiently reduces the charging cost and time in a VEN.


Asunto(s)
Cadena de Bloques , Electricidad , Aprendizaje Automático
3.
Sensors (Basel) ; 22(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36081022

RESUMEN

In the recent past, a huge number of cameras have been placed in a variety of public and private areas for the purposes of surveillance, the monitoring of abnormal human actions, and traffic surveillance. The detection and recognition of abnormal activity in a real-world environment is a big challenge, as there can be many types of alarming and abnormal activities, such as theft, violence, and accidents. This research deals with accidents in traffic videos. In the modern world, video traffic surveillance cameras (VTSS) are used for traffic surveillance and monitoring. As the population is increasing drastically, the likelihood of accidents is also increasing. The VTSS is used to detect abnormal events or incidents regarding traffic on different roads and highways, such as traffic jams, traffic congestion, and vehicle accidents. Mostly in accidents, people are helpless and some die due to the unavailability of emergency treatment on long highways and those places that are far from cities. This research proposes a methodology for detecting accidents automatically through surveillance videos. A review of the literature suggests that convolutional neural networks (CNNs), which are a specialized deep learning approach pioneered to work with grid-like data, are effective in image and video analysis. This research uses CNNs to find anomalies (accidents) from videos captured by the VTSS and implement a rolling prediction algorithm to achieve high accuracy. In the training of the CNN model, a vehicle accident image dataset (VAID), composed of images with anomalies, was constructed and used. For testing the proposed methodology, the trained CNN model was checked on multiple videos, and the results were collected and analyzed. The results of this research show the successful detection of traffic accident events with an accuracy of 82% in the traffic surveillance system videos.


Asunto(s)
Aprendizaje Profundo , Accidentes de Tránsito , Algoritmos , Ciudades , Humanos , Redes Neurales de la Computación
4.
PeerJ Comput Sci ; 8: e930, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35494859

RESUMEN

Searchable symmetric encryption (SSE) provides an effective way to search encrypted data stored on untrusted servers. When the server is not trusted, it is indispensable to verify the results returned by it. However, the existing SSE schemes either lack fairness in the verification of search results, or do not support the verification of multiple keywords. To address this, we designed a multi-keyword verifiable searchable symmetric encryption scheme based on blockchain, which provides an efficient multi-keyword search and fair verification of search results. We utilized bitmap to build a search index in order to improve search efficiency, and used blockchain to ensure fair verification of search results. The bitmap and hash function are combined to realize lightweight multi-keyword search result verification, compared with the existing verification schemes using public key cryptography primitives, our scheme reduces the verification time and improves the verification efficiency. In addition, our scheme supports the dynamic update of files and realizes the forward security in update. Finally, formal security analysis proves that our scheme is secure against Chosen-Keyword Attacks (CKA), experimental analysis demonstrations that our scheme is efficient and viable in practice.

5.
Appl Bionics Biomech ; 2022: 3859629, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35211193

RESUMEN

Land registration authorities are frequently held accountable for the alleged mismanagement and manipulation of land records in various countries. Pakistan's property records are especially vulnerable to falsification and corruption because of the country's poverty. Different parties therefore claim varying degrees of authority over a specific piece of land. Given the fact that this data has been consolidated, it has become significantly more vulnerable to security threats. The goal of decentralized system research has been to increase the reliability of these systems. In order to fix the flaws of centralized systems, blockchain-based decentralized systems are currently in development. By using significant land record registration models as the basis for this research, we hope to create a proof-of-concept system or framework for future use. Pakistan's land registration agency will benefit from our proposed conceptual framework. For the Pakistani government to implement a decentralized land record registry system, we propose a conceptual framework that outlines the essential components.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA