Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Curr Res Food Sci ; 9: 100826, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39314221

RESUMEN

This study evaluated antioxidant and antimicrobial properties of chitosan gel (Cs-gel) functionalized with cinnamaldehyde oil (CN) and orange peel-derived flavonoid extract (Fs) using the ionic-gelation method. Results showed that the encapsulation efficiencies of CCF-9 and CCN were 83.14 ± 3.34 and 80.56 ± 1.17%, respectively. The interaction of CN or Fs on Cs-gel indicates the presence of H-bonding formation, as observed by UV-vis spectroscopy, Fourier transform infrared spectrophotometry (FTIR), and Raman-spectroscopy showed a good corroboration with Surflex-dock findings. Scanning electron microscopy also showed the integration that occurred between Cs and both ligands, which was further supported with X-ray diffraction and X-Ray photoelectron spectroscopy spectra. The textural properties of CCF-5 gel showed high hardness, chewiness, and gumminess values, indicating that the integration of Fs and CN altered the microstructure of Cs-gel. Chotison-functionalized based gels exhibited higher antioxidant abilities against DPPH and ABTS free radicals than Cs-gel. The CCF-9 gel showed a good inhibition value of 29.91 ± 1.22 and 93.61 ± 2.12% against Penicillium expansum and Alternaria westerdijkiae, respectively. Additionally, CCF-9 inhibition zones against Staphylococcus aureus, Escherichia coli, and Bacillus cerues were 28.65 ± 0.05, 27.69 ± 0.04, and 26.16 ± 0.02 mm, respectively. These findings demonstrated the potential antioxidant and antimicrobial effects of functionalized chitosan gel indicating its potential as a bioactive additive for food preservation.

2.
Food Chem ; 463(Pt 2): 141239, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39278077

RESUMEN

This study aimed at co-encapsulating borage seed oil (BSO)- and peppermint oil (PO) blends in ultrasound-assisted complex nanoparticles stabilized by soy protein isolate (SPI) and purity gum ultra (PGU) in different ratios: SPI/PGU-1:0 (NP1), 0:1 (NP2), 1:1 (NP3), 1:3 (NP4), and 3:1 (NP5). The BSO- and PO-loaded SPI/PGU complex nanoparticles (BP-loaded SPNPs) coded as NP4 (SPI-PGU-1:3) revealed a zeta potential of -33.27 mV, a PDI of 0.14, and the highest encapsulation efficiency (81.38 %). The main interactions observed among SPI, PGU, BSO, PO, and a blend of BSO and PO, as determined by FTIR and molecular docking, involved hydrophobic effects, electrostatic attraction, and H-bonding. These interactions played crucial roles in the production of BP-loaded SPNPs. XRD results validated the alterations in the structure of BP-loaded SPNPs caused by varying proportions of SPI and PGU. The thermal capacity of BP-loaded SPNPs (NP4), as determined by TGA, exhibited the lowest amount of weight loss compared to other BP-loaded SPNPs. Morphological results revealed that NP4 and NP5 exhibited a spherical surface and two distinguishable layers, indicating successful coating of PGU onto the droplet surface. In addition, BP-loaded SPNPs (NP4) exhibited a higher antioxidant effect due to their improved progressive release and prolonged release of co-encapsulated BSO and PO during in vitro digestion. The comprehensive investigation of the co-encapsulation of BSO and PO in complex nanoparticles, dietary supplements, and double-layered emulsified systems provides valuable insights into the development of functional foods.

3.
Food Chem X ; 23: 101663, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39139488

RESUMEN

The effect of non-thermal (HPP and semi-HPP-CO2) and thermal (flash pasteurization, FP) treatments on phytonutrients of flowable smoothie prepared from quadrable vegetable blends (FQVS) was investigated using multidimensional methods. First, FQVS gained an acceptability sensorial index (85.7%) compared with other formulas. FQVS/semi-HPP-CO2 showed a greater microbial stability during storage (0-30 d) compared to HPP and FP. Fructose and glucose highly declined than sucrose in all smoothies, where semi-HPP-CO2 steadily declined this reduction during storage. LC/MS-MS analysis showed that semi-HPP-CO2 preserved most of FQVS's phytonutrients and their antioxidant effects measured by ORAC and oxidative enzymes inhibition assays. Semi-HPP-CO2 acquired the lowest apparent viscosity among different FQVS smoothies, showing its post-processing flowability behavior. Most importantly, semi-HPP-CO2 predicted a reduced power consumption for HPP and reduced the gas emission. In conclusion, blending different vegetables assisted with semi-HPP-CO2 could be a novel approach to produce storage-stable smoothies with adequate amounts of phytonutrients and sensorial scores.

4.
J Sci Food Agric ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031689

RESUMEN

BACKGROUND: The cryoprotective effect of xylooligosaccharide (XO) and kappa-carrageenan (KC) mixture on silver carp proteins in fluctuated frozen storage from 4 to -18 °C was analyzed. Positive control as a conventional cryoprotectant mixture of sucrose (4%) and sorbitol (4%), KC (3%) and XO/KC (3%) treatments were incorporated in silver carp surimi and myofibrillar proteins to analyze the water mobility and its influence on structural attributes. RESULTS: The temperature fluctuation significantly increased the structural alteration in samples with no treatments due to oxidative changes, protein denaturation and recrystallization. Meanwhile, the mixture of XO and KC (XO/KC 3%) significantly reduced the tertiary and secondary structural alterations by preventing the oxidative changes in α-helix and tryptophan (Trp) residues. Moreover, XO/KC (3%) inhibited water mobility, hindering the T22 relaxation time, as compared to the samples added with KC (3%) and the positive control. Interestingly, the XO/KC (3%) mixture significantly reduced the formation of extracellular spaces and recrystallization by restricting the partial dehydration of muscles and extracellular solution concentration. CONCLUSION: From the current results, it can be concluded that the XO/KC mixture could be efficient in protecting aquatic food proteins during fluctuating frozen storage by preventing the exposure of Trp residues and α-helix contents. Moreover, XO/KC restricted the water mobility by establishing a bond and making water unavailable for crystallization and recrystallization. Therefore, XO/KC could be used as an effective mixture to prevent fluctuated and frozen storage changes in aquatic foods. © 2024 Society of Chemical Industry.

5.
Food Chem ; 459: 140344, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38991450

RESUMEN

Persimmons are widely acknowledged as a valuable source of both medicinal and nutritional components, providing a diverse spectrum of nutrients and phytochemicals. Despite these benefits, biases against persimmons persists due to their characteristic astringent flavor that sets them apart from other fruits. Although several studies have explored various aspects of persimmons, a comprehensive review that addresses post-harvest challenges, processing innovations, and potential applications is notably absent in the literature. This review aims to fill this gap by discussing a range of topics, including emerging preservation technologies, methods for detecting and eliminating astringency, identification of functional elements, health-promoting prospects, and advancements in processed persimmon products. The primary objective is to enhance the utilization of persimmons and promote the development of diverse, customized products, thereby fostering the emergence of functional and futuristic foods.


Asunto(s)
Diospyros , Manipulación de Alimentos , Frutas , Frutas/química , Diospyros/química , Humanos , Manipulación de Alimentos/instrumentación , Gusto , Fitoquímicos/química , Alimentos Funcionales/análisis
6.
J Agric Food Chem ; 72(20): 11706-11715, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728528

RESUMEN

In this study, we devised a photothermally stable phytochemical dye by leveraging alizarin in conjunction with the metal-organic framework ZIF-8 (AL@ZIF-8). The approach involved grafting alizarin into the microporous structure of ZIF-8 through physical adsorption and hydrogen-bonding interactions. AL@ZIF-8 significantly enhanced the photostability and thermostability of alizarin. The nanoparticles demonstrate substantial color changes in various pH environments, showcasing their potential for meat freshness monitoring. Furthermore, we introduced an intelligent film utilizing poly(vinyl alcohol)-sodium alginate-AL@ZIF-8 (PA-SA-ZA) for detecting beef freshness. The sensor exhibited a superior water contact angle (52.34°) compared to the alizarin indicator. The color stability of the film was significantly enhanced under visible and UV light (ΔE < 5). During beef storage, the film displayed significant color fluctuations correlating with TVB-N (R2=0.9067), providing precise early warning signals for assessing beef freshness.


Asunto(s)
Alginatos , Colorimetría , Alcohol Polivinílico , Alginatos/química , Animales , Alcohol Polivinílico/química , Bovinos , Colorimetría/métodos , Antraquinonas/química , Embalaje de Alimentos/instrumentación , Fitoquímicos/química , Carne Roja/análisis , Estructuras Metalorgánicas/química
7.
Phytochem Anal ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768954

RESUMEN

INTRODUCTION: The Olive (Olea europaea L.) is one of the most popular edible oil-producing fruits, consumed worldwide for its myriad nutritional and health benefits. Olive oil production generates huge quantities of by-products from the fruit, which are considered environmental hazards. Recently, more and more efforts have been made to valorize olive by-products as a source of low-cost, value-added food applications. OBJECTIVE: The main objective of this study was to globally assess the metabolome of olive fruit by-products, including olive mill wastewater, olive pomace, and olive seeds from fruits from two areas, Siwa and Anshas, Egypt. METHODS: Gas chromatography-mass spectrometry (GC-MS) and ultra-high-performance liquid chromatography with mass spectrometry (UPLC-MS) were used for profiling primary and secondary metabolites in olive by-products. Also, multivariate data analyses were used to assess variations between olive by-product samples. RESULTS: A total of 103 primary metabolites and 105 secondary metabolites were identified by GC-MS and UPLC-MS, respectively. Fatty acids amounted to a major class in the olive by-products at 53-91%, with oleic acid dominating, especially in the pomace of Siwa. Mill wastewater was discriminated from other by-products by the presence of phenolics mainly tyrosol, hydroxyl tyrosol, and α-tocopherol as analyzed by UPLC-MS indicating their potential antioxidant activity. Pomace and seeds were rich in fatty acids/esters and hydroxy fatty acids and not readily distinguishable from each other. CONCLUSION: The current work discusses the metabolome profile of olive waste products for valorization purposes. Pomace and seeds were enriched in fatty acids/esters, though not readily distinguishable from each other.

8.
Compr Rev Food Sci Food Saf ; 23(2): e13313, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38470221

RESUMEN

Polyphenols are well documented against the inhibition of foodborne toxicants in meat, such as heterocyclic amines, Maillard's reaction products, and protein oxidation, by means of their radical scavenging ability, metal chelation, antioxidant properties, and ability to form protein-polyphenol complexes (PPCs). However, their thermal stability, low polarity, degree of dispersion and polymerization, reactivity, solubility, gel forming properties, low bioaccessibility index during digestion, and negative impact on sensory properties are all questionable at oil-in-water interface. This paper aims to review the possibility and efficacy of polyphenols against the inhibition of mutagenic and carcinogenic oxidative products in thermally processed meat. The major findings revealed that structure of polyphenols, for example, molecular size, no of substituted carbons, hydroxyl groups and their position, sufficient size to occupy reacting sites, and ability to form quinones, are the main technical points that affect their reactivity in order to form PPCs. Following a discussion of the future of polyphenols in meat-based products, this paper offers intervention strategies, such as the combined use of food additives and hydrocolloids, processing techniques, precursors, and structure-binding relationships, which can react synergistically with polyphenols to improve their effectiveness during intensive thermal processing. This comprehensive review serves as a valuable source for food scientists, providing insights and recommendations for the appropriate use of polyphenols in meat-based products.


Asunto(s)
Productos de la Carne , Carne , Aminas , Antioxidantes , Carcinógenos
9.
Food Chem ; 438: 138006, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37989023

RESUMEN

The co-pigmentation behaviour of RuBisCo proteins (with different concentrations) on peonidin-3-O-p-coumaroylrutinoside-5-O-glucoside (P3C5G, extracted from Rosetta potato's peels) conjugates in isotonic sport drinks (ISD) was examined using multispectral, thermal stability kinetics, and libDock-based molecular docking approaches. The colorant effects of RuBisCo on P3C5G were also studied in spray-dried microencapsulated ISD-models. RuBisCo, especially at a concentration of 10 mg/mL in ISD, showed a co-pigmentation effect on the color of P3C5G, mostly owing to its superior hyperchromicity, pKH-levels, and thermal stability. Results from multispectral approaches also revealed that RuBisCo could noncovalently interact with P3C5G as confirmed by libDock findings, where P3C5G strongly bound with RuBisCo via H-bonding and π-π forces, thereby altering its secondary structure. RuBisCo also preserved color of P3C5G in ISD-powdered models. These detailed results imply that RuBisCo could be utilized in ISD-liquid and powder models that might industrially be applied as potential food colorants in products under different conditions.


Asunto(s)
Antocianinas , Ribulosa-Bifosfato Carboxilasa , Simulación del Acoplamiento Molecular , Antocianinas/química , Glucósidos/química , Cinética
10.
World J Microbiol Biotechnol ; 39(10): 265, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37515645

RESUMEN

Tea is one of the most popular beverages worldwide, with several health benefits attributed for its rich chemical composition and further associated with fermentation process to improve its quality attributes. Most tea types originate from the leaves of Camellia sinensis with differences in fermentation levels yielding black tea, green tea, pouchong tea, oolong tea. Teas like pu-erh or kombucha to encompass both green and red types are further post-fermented. Tea fermentation is a traditional process involving physical, biochemical, and microbial changes which are associated with improved organoleptic characters, nutritive value, and health outcomes. The production of fermented tea relies on naturally occurring enzymes and microbial metabolic activities. This review focuses on presenting a holistic overview on the effect of different microorganisms including bacteria, yeast, and fungi on the biochemical changes and sensory attributes of fermented tea products reported in research articles along the last 15 years. Moreover, production conditions and major biochemical changes are dissected to present the best factors influencing fermented tea quality. This review presents an evidence-based reference for specialists in tea industry to optimize tea fermentation process for targeted attributes.


Asunto(s)
Camellia sinensis , , Fermentación , Té/química , Hongos , Levaduras
11.
Int J Biol Macromol ; 243: 125189, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37285883

RESUMEN

The effect of the covalent binding between anthocyanins extracted from purple potato peels and beta-lactoglobulin (ß-Lg) on its ability to fabricate a green/smart halochromic biosensor combined with pullulan (Pul) was studied. The physical, mechanical, colorimetry, optical, morphological, stability, functionality, biodegradability, and applicability of ß-Lg/Pul/Anthocyanin biosensors to monitor the Barramundi fish's freshness during storage were entirely evaluated. The docking and multispectral results proved that ß-Lg could be successfully phenolated with anthocyanins and subsequently interacted with Pul via H-bonding and other forces which mainly subsequently form the smart biosensors. Phenolation with anthocyanins significantly heightened the mechanical, moisture resistance, and thermal steadiness of ß-Lg/Pul biosensors. Anthocyanins also nearly duplicated the bacteriostatic and antioxidant activities of ß-Lg/Pul biosensors. The biosensors changed the color associated with the loss in freshness of the Barramundi fish, mostly due to the ammonia production and pH-alteration throughout fish deterioration. Most importantly, ß-Lg/Pul/Anthocyanin biosensors are biodegradable and decomposed within ∼30 d of simulated environmental circumstances. Overall, ß-Lg/Pul/Anthocyanin smart biosensors could minimize the usage of plastic packaging materials and employ to monitor the freshness of stored fish and fish-stuffs.


Asunto(s)
Técnicas Biosensibles , Perciformes , Animales , Antocianinas , Lactoglobulinas , Glucanos , Peces , Concentración de Iones de Hidrógeno , Embalaje de Alimentos/métodos
12.
Foods ; 12(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36832859

RESUMEN

Dates have been demonstrated to display a variety of bioactivities and are rich in polyphenols. In this work, we assessed the underlying immunomodulatory effects of date seed polyphenol extracts that had been industrially encapsulated and fabricated into commercial pills in RAW264.7 macrophages using the NF-κB and Nrf2 signaling pathways. The outcomes showed that in RAW264.7 cells, the date seed pills effectively stimulated nuclear translocation of NF-E2-related factor 2 (Nrf2) and NF-κB, along with downstream cytokines (IL-1ß, TNF-α, IL-6, and IFN-γ), ROS ratios, and SOD activity. It is interesting to note that the encapsulated pills activated Nrf2 nuclear translocation more effectively than the non-encapsulated ones did. Additionally, pills at 50 µg mL-1 improved immunological responses, but pills at 1000 µg mL-1 prevented macrophages from becoming inflamed. These results showed that the immunomodulatory effects were differently impacted by commercial date seed pills, a finding which was related to the large-scale manufacturing of the pills and the incubation concentrations used. These results also shed light on a new trend of using food byproducts as an innovative supplement.

13.
PeerJ ; 11: e14648, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36726723

RESUMEN

Hazard Analysis Critical Control Point (HACCP) is a risk management protocol developed to ensure food safety through a precautionary approach that is believed to offer assurances in producing safe food for customers. Yogurt is made in a number of phases, commencing with the collection of raw milk and ending with consumer consumption. While this is happening, major economic and health issues might arise from exposing the manufacturing line to biological, chemical, and/or physical contaminations. As a result, the decision tree approach was used to determine the CCPs during the production of yogurt. Additionally, biological dangers are incorporated as a by-product of the system's implementation performance. In particular, the plain set and nut puree-honey-fortified stirred yogurt manufacturing techniques are highlighted for the first time in this study. The potential manufacturing risks are described for the first time, together with information on how HACCP plans may guard against major risks that could result in the production of yogurt that is not in compliance with established standards.


Asunto(s)
Análisis de Peligros y Puntos de Control Críticos , Yogur , Manipulación de Alimentos/métodos , Inocuidad de los Alimentos , Alimentos
14.
Crit Rev Food Sci Nutr ; 63(19): 3538-3555, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34014126

RESUMEN

Meat fermentation ensures its preservation, improved safety and quality. This prominently used traditional process has survived for ages, creating physical, biochemical, and microbial changes, and to significantly affect the functionality, organoleptic property, and nutrition of the fermented products. In some process, the growth of various pathogenic and spoilage microorganisms is inhibited. The production of fermented meat relies on naturally occurring enzymes (in the muscle or the intestinal tract) as well as microbial metabolic activities. In this review, fermented meat types and their health benefits were firstly introduced. This was followed by a description of fermentation conditions vis-à-vis starters, bacterial, yeast and mold cultures, and their role in meat. The review focuses on how microorganisms affect texture change, flavor formation, and biogenic amines (BA) accumulation in fermented meat. In addition, the production conditions and the major biochemical changes in fermented meat products were also introduced to present the best factors influencing the quality of fermented meat. Microorganisms and microbial enzymes in fermented meats were discussed as they could affect organoleptic characteristics of fermented meats. Moreover, safety concerns and prospects for further research of fermented meat were also discussed with emphasis on novel probiotic and starter cultures development; bioinformatics, omics technologies and data modeling to maximize the benefit from fermentation process in meat production.


Asunto(s)
Microbiología de Alimentos , Productos de la Carne , Fermentación , Bacterias , Productos de la Carne/análisis , Aminas Biogénicas/análisis
15.
Crit Rev Food Sci Nutr ; 63(27): 8939-8959, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35426751

RESUMEN

The current relevance of a healthy diet in well-being has led to a surging interest in designing novel functional food products enriched by biologically active molecules. As nature-inspired bioactive components, several lines of research have revealed the capability of polyphenolic compounds (phenolics) in the medical intervention of different ailments, i.e., tumors, cardiovascular and inflammatory diseases. Phenolics typically possess antioxidant and antibacterial properties and, due to their unique molecular structure, can offer superior platforms for designing functional products. They can protect food ingredients from oxidation and promote the physicochemical attributes of proteins and carbohydrate-based materials. Even though these properties contribute to the inherent benefits of bioactive phenolics as important functional ingredients in the food industry, the in vitro/in vivo instability, poor solubility, and low bioavailability are the main factors restricting their food/pharma applicability. Recent advances in the encapsulation realm are now offering efficient platforms to overcome these limitations. The application of encapsulation field may offer protection and controlled delivery of phenolics in food formulations. Here, we review recent advances in micro/nanoencapsulation of phenolics and highlight efficient carriers from this decade, which have been utilized successfully in food applications. Although further development of phenolic-containing formulations promises to design novel functional food formulations, and revolutionize the food industry, most of the strategies found in the scientific literature are not commercially applicable. Moreover, in vivo experiments are extremely crucial to corroborate the efficiency of such products.


Asunto(s)
Ingredientes Alimentarios , Sistema de Administración de Fármacos con Nanopartículas , Antioxidantes , Antibacterianos , Alimentos Funcionales
16.
Front Mol Biosci ; 9: 984461, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353729

RESUMEN

Several disease-modulatory FDA-approved drugs are being used in patients with neurodegenerative diseases. However, information on their toxicity-related profiles is very limited. Therefore, measurement of drug toxicity is essential to increase the knowledge of their side effects. This study aimed to identify compounds that can modulate M-cell regeneration by causing neuro-protection and -toxicity. Here, we developed a simple and efficient in vivo assay using Tg (hsp: Gal4FF62A; UAS: nfsB-mCherry) transgenic zebrafish larvae. Interestingly, via the phenotype-based drug screening approach, we rapidly investigated 1,260 compounds from the United States drug collection and validated these in large numbers, including 14 compounds, that were obstructing this regeneration process. Next, 4 FDA-approved drugs out of 14 compounds were selected as the lead hits for in silico analysis to clarify their binding patterns with PTEN and SOCS3 signaling due to their significant potential in the inhibition of axon regeneration. Molecular docking studies indicated good binding affinity of all 4 drugs with the respective signaling molecules. This may point to PTEN and SOCS3 as the signaling molecules responsible for reducing axon regeneration. Moreover, the acute effect of compounds in reducing M-cell regeneration delineated their toxic effect. In conclusion, our in vivo along with in silico screening strategy will promote the rapid translation of new therapeutics to improve knowledge of the toxicity profile of approved/non-approved drugs efficiently.

17.
Nanomaterials (Basel) ; 12(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234412

RESUMEN

The advent of nanotechnology has initiated a profound revolution in almost all spheres of technology. The electronics industry is concerned with the ongoing miniaturization of devices and as such requires packaging technologies that will make the devices more compact and resilient. 3D packaging, system in package, and system on chip are the various packaging techniques that utilize nanoscale components for their implementation. The active components of the ICs have kept pace with Moore's law, but the passive components have proven an impediment in the race for miniaturization. Moreover, the toxic effects and nano-scale problems associated with conventional soldering techniques have entailed the active involvement of nanotechnology in the search for answers. Recent advances in these fields and the diverse nanomaterials which are being employed to resolve these issues have been discussed in detail.

18.
Int J Biol Macromol ; 222(Pt B): 1908-1917, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36202329

RESUMEN

The occurring of glycation reaction and protein-protein interaction in the energy appetizers caused browning and hardness instability while storing these appetizers, leading to the loss of consumer acceptability. Amassing among anthocyanins and proteins could mitigate the appetizers' instability. We, therefore, investigated the anti-aggregation and ant-glycoxidation impacts of mulberry anthocyanins combined with ultrasonic treatment (UT) pre-texturization in an energy appetizer model throughout storage via multi-dimensional methods, containing UPLC-ESI-MS/MS, SDS-PAGE, FTIR, texture analyser, and a molecular docking analysis. Results noted that UT-anthocyanins significantly downgraded the browning progress, advanced glycation end-products, and/or N-(carboxymethyl)-l-lysine intensities of energy appetizers after 45 d of storage at 45 °C. UT-anthocyanins also relegated the protein insolubility, accumulation, oligomerization, and glycoxidation throughout the late storage. A molecular docking analysis evidenced that cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside networked with ß-lactoglobulin subunits via H-bonding and π-π forces. This binding hindered some glycoxidation residues of ß-lactoglobulin the lysyl residues. Finally, these findings recommended that the UT-anthocyanins could be employed as an encouraging antiglycative approach to alleviate AGEs-creation and other consequent undesirable fluctuations in protein-rich food patterns, thereby enhancing the energy appetizer's post-processing stability during storage.


Asunto(s)
Antocianinas , Morus , Antocianinas/química , Lactoglobulinas , Espectrometría de Masas en Tándem , Simulación del Acoplamiento Molecular , Morus/química
19.
Food Sci Anim Resour ; 42(4): 689-711, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35855274

RESUMEN

The purpose of our study was to determine the impact of rosemary extract in duck eggs, as determined by in vitro antioxidant capacity, lipid oxidation, fatty acid profiles, and flavor analyses. Three groups of salted duck eggs were compared: A control group and group enriched with 0.1% and 0.5% (w/v) rosemary extracts for 28 days of salting. In a time-dependent manner, the radical scavenging activity and reduction power of eggs with 0.5% (w/v) rosemary extract were significantly higher those of the control at 28 days after salting. The fatty acid profiles of salted egg were significantly affected by rosemary extract and salting time. Palmitic acid was the most abundant fatty acid in salted egg treated with rosemary extract, followed by linoleic acid and arachidonic acid. Furthermore, the treated eggs contained more docosahexaenoic acid than the control ones. And the treated eggs also have a considerable impact on the lipid oxidation process (primary and secondary oxidation). As a result, rosemary extract can be used as a natural antioxidant spice to prevent oxidation and extend the shelf life of eggs during storage. Furthermore, flavor research using solid phase microextraction - gas chromatography - mass spectrometry and an electronic nose demonstrated that adding rosemary extract to salted eggs could give them a distinct flavor.

20.
Food Res Int ; 157: 111322, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35761609

RESUMEN

Protein oxidation in meat has received immense attention since it significantly affects the quality of meat-based products. This review sheds light on the effects of protein oxidation on the physicochemical properties of meat and meat-based products during processing, and highlights major quality concerns and challenges to the food industry. Protein oxidation is often initiated by oxidative attack by reactive oxygen species and modifications of side chain amino acids, which may result in protein aggregation, carbonylation, alteration of surface hydrophobicity, and perturbation in primary, secondary and tertiary structures. Thus, protein oxidation during processing (especially thermal treatments) has raised serious concerns about the quality of the final products. These adverse consequences usually intensify with increase in processing temperature and time. Protein oxidation may also cause severe deterioration of nutritional value owing to the loss of essential amino acids and resistance of the oxidized protein molecules to the hydrolytic action of digestive enzymes. In addition, it may promote drip loss and decrease water holding capacity that would eventually negatively impact texture. Furthermore, protein oxidation is closely associated with other processing-induced adverse events, in particular lipid oxidation and formation of toxic Maillard reaction products, such as heterocyclic amines and advanced glycation end-products, but the underlying mechanisms have remained unclear. Several strategies including careful choice of processing methods and use of natural agents, such as polyphenols, hydrocolloids and vitamins alone or in combination have been proposed for the attenuation of protein oxidation and its related undesirable reactions through binding with precursors and/or reactive intermediary compounds.


Asunto(s)
Aminoácidos , Carne , Aminoácidos/metabolismo , Industria de Alimentos , Productos Finales de Glicación Avanzada/metabolismo , Músculos/metabolismo , Oxidación-Reducción , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA