Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Plants (Basel) ; 13(3)2024 Jan 28.
Article En | MEDLINE | ID: mdl-38337918

Origanum grosii (L.) and Thymus pallidus (L.) are medicinal plants recognized for their uses in traditional medicine. In this context, the aim of this article is to highlight the results of a phytochemical analysis (HPLC), with particular emphasis on the antioxidant (DPPH, TAC, and FRAP), analgesic, anti-inflammatory, haemagglutinin-test-related, and hemolytic activities of the total extracts of these plants. Phytochemical analysis via HPLC revealed that licoflavone C (30%) is the main compound in Origanum grosii, while hesperidin (43%) is found in T. pallidus. Evaluation of the antioxidant capacity of Origanum grosii and Thymus pallidus using the DPPH, TAC, and FRAP methods revealed an IC50 of the order of 0.085 mg/mL and 0.146 mg/mL, an EC50 of the order of 0.167 mg/mL and 0.185 mg/mL, and a total antioxidant capacity of between 750 mg EQ/g and 900 mg EQ/g, respectively. Analgesic evaluations revealed writhes inhibition of the order of 97.83% for O. grosii and 90% for T. pallidus. In addition, both plant extracts showed limited hemolytic activity, not exceeding 30% at a concentration of 100 mg/mL. Evaluation of the anti-inflammatory potential showed edema inhibition of the order of 94% (800 mg/kg) for O. grosii and 86% (800 mg/kg) for T. pallidus. These results highlight the potential applications of these extracts in pharmacological research.

2.
Sci Rep ; 13(1): 22890, 2023 12 21.
Article En | MEDLINE | ID: mdl-38129637

This study aims to investigate the chemical and mineral composition, antioxidant, analgesic, and anti-inflammatory effects of the aqueous extract of Cistus laurifolius var. atlanticus Pit. (Cistaceae). Additionally, molecular docking interactions of various ligands with antioxidant protein target urate oxidase (1R4U) and anti-inflammatory protein target cyclooxygenase-2 (3LN1), revealing potential dual activities and highlighting specific residue interactions. The chemical characterization focused at first glance on the mineral composition which showed that C. laurifolius extract is a mineral-rich source of potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), phosphorus (P), and zinc (Zn). We next performed, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, the latter showed various polyphenols in C. laurifolius extract including Gallic acid as the predominant polyphenol. Isoquercetin, Taxifolin and Astragalin were also among the major flavonoids detected. The antioxidant capacity of C. laurifolius leaves was tested using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1- picrylhydrazyl (DPPH) and reducing power (RP) assays. In vitro analysis of the anti-inflammatory property of C. laurifolius leaves was conducted by the albumin denaturation test and the in vivo was assessed in the sequel by carrageenan-induced paw edema test. The analgesic activity was evaluated in vivo using tail flick, acetic acid-induced contortion, and plantar tests. The findings showed that the leave extract had a powerful antioxidant activity with an IC50 values of 2.92 ± 0.03 µg/mL (DPPH) and 2.59 ± 0.09 µg/mL (in RP test). The studied extract strongly abolished the induced inflammation (82%). Albumin denaturation test recorded an IC50 value of 210 µg/mL. Importantly, the oral administration of C. laurifolius extract considerably reduced the nociceptive effect of acetic acid in rats, showing a significant analgesic effect in a dose-related manner. Altogether, our results showed that C. laurifolius can be a promising source of phytochemicals for drug development potential.


Antioxidants , Cistus , Rats , Animals , Antioxidants/pharmacology , Antioxidants/analysis , Cistus/chemistry , Polyphenols/pharmacology , Polyphenols/analysis , Chromatography, Liquid , Molecular Docking Simulation , Plant Extracts/pharmacology , Plant Extracts/chemistry , Tandem Mass Spectrometry , Analgesics/pharmacology , Analgesics/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Acetic Acid , Minerals , Albumins
3.
Front Microbiol ; 14: 1279082, 2023.
Article En | MEDLINE | ID: mdl-37954245

The disease-free existence of humans is constantly under attack by a variety of infections caused by a variety of organisms including bacteria. Notable among the bacteria is Staphylococcus aureus which is an etiological organism for infections including impetigo, folliculitis, and furuncles. The response of the human immune system against this disease is often neutralized by the production of a pigment called Staphyloxanthin (STX) via a series of reactions mediated by several enzymes. Among these enzymes, dehydrosqualene synthase, also known as CrtM, has emerged as a viable drug target due to its role in mediating the first step of the pathway. Consequently, this study employs molecular modeling approaches including molecular docking, quantum mechanical calculations, and molecular dynamics (MD) simulations among others to investigate the potential of napthyridine derivatives to serve as inhibitors of the CrtM. The results of the study revealed the high binding affinities of the compounds for the target as demonstrated by their docking scores, while further subjection to screening pipeline aimed at determining their fitness for development into drugs revealed just one compound namely 6-[[1-[(2-fluorophenyl) methyl]triazol-4-yl]methoxy]-4-oxo-1H-1,5-naphthyridine-3-carboxylic acid as the compound with good drug-like, pharmacokinetics, and toxicity properties profiles. A 100 ns-long MD simulation of the complexes formed after molecular docking revealed the stable interaction of the compound with the target. Ultimately, this study can be a promising outlet to discover a weapon to fight against clinically resistant bacteria, however, further experimental studies are suggested to carry out in the wet lab, pre-clinical, and clinical levels.

4.
ACS Omega ; 8(43): 40848-40863, 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37929134

In an attempt to examine novel adsorbents in accessing an ideal adsorption system, this study aimed to help understand the main and secondary characteristics of a Moroccan natural clay. X-ray fluorescence, infrared, and scanning electron microscopy with energy-dispersive X-ray spectroscopy analysis (SEM-EDX) were used for the identification. The findings demonstrate that this Clay is composed of a mixture of quartz, calcite, magnetite, and Rutile in very high proportions. SEM revealed the presence of clay grains in the presence of fine particles and irregularly contoured sticks. The results of semiquantitative detection by EDX also reveal the presence of certain mineral species (Si, Al, Mg, Fe, K, Cl, S, Ca, and Na). The exploited kinetic technique was achieved using two different kinetic models: first- and second-order rate laws. Commensurate to the obtained results, the 2-sec order model better described the adsorption of dye MB onto the natural clay. The results confirmed that the adsorption process followed the Langmuir model with the high coefficient correlation obtained which are very close to 1. In the sequel, DFT results revealed that the HOMO and LUMO surfaces of the methylene blue dye are mostly distributed on all dye parts, reflecting possible strong interactions with the clay. The quantum descriptors investigated in this study identify the most nucleophilic and electrophilic centers that can be used to suggest a suitable mechanism for the adsorption of the dye by the clay. The values of enthalpy ΔH0 and entropy ΔS0 of activation were -15.88 kJ mol-1 and -0.021 J mol-1 K-1, respectively, show that the nature of the adsorption process of MB on clay is exothermic and the order of distribution of the dye molecules on the adsorbent increases with respect to that of the solution so the negative values of ΔG0 (from -9. 62 to -8.99 kJ mol-1) indicate that the adsorption process is spontaneous.

5.
Chem Biodivers ; 20(12): e202301268, 2023 Dec.
Article En | MEDLINE | ID: mdl-37843082

Interstitial Cystitis (IC) is a chronic inflammatory disease that lacks effective treatment. The present study aimed to investigate the potential of aqueous ethanol extract of Cuminum cyminum (AEECC) on oxidative stress, inflammation and overactivity of urinary bladder induced by cyclophosphamide (CYP). Female Sprague-Dawley rats received intraperitoneal administration of cyclophosphamide (150 mg/kg, i. p. 1st , 4th , and 7th days). To investigate the urothelial damage, the bladder weight, nociception behavior, and Evans blue dye extravasation method was used. The antioxidants CAT, GPX and NO were measured. ELISA determined the IL-6 and TNF-α levels. The spasmolytic effect of AEECC was investigated on isolated bladder strips and its mechanisms were determined. The enhanced nociception behavior, bladder weight, vascular permeability, edema, hemorrhage, nitric oxide, IL-6 and TNF-α levels by CYP administration were significantly reduced by AEECC (250 and 500 mg/kg). A significant increase in serum antioxidant system such as CAT and GPx was also observed in AEECC-treated rats. The AEECC (3 mg/ml) significantly reduced urinary bladder tone in the strips pre-contracted with carbachol in both control and CYP-treated rats. This relaxation was demolished by atropine, nifedipine, glibenclamide, and indomethacin but not with propranolol. The plant extract showed the presence of antioxidant and anti-inflammatory phytochemicals. These results suggest that Cuminum cyminum offers uroprotective activity and can ameliorate CYP-induced bladder toxicity by modulating antioxidant parameters, pro-inflammatory cytokine levels and bladder smooth muscle overactivity. The in silico binding interactions of antioxidant 2I3Y and anti-inflammatory protein 1TNF with various ligands from Cuminum cyminum seeds revealed potential bioactive compounds with promising antioxidant and anti-inflammatory properties, providing valuable insights for drug development and nutraceutical research.


Cuminum , Cystitis , Rats , Animals , Urinary Bladder , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cystitis/chemically induced , Cystitis/drug therapy , Cytokines , Tumor Necrosis Factor-alpha , Interleukin-6 , Rats, Sprague-Dawley , Cyclophosphamide/toxicity , Anti-Inflammatory Agents/pharmacology
6.
Nutrients ; 15(18)2023 Sep 21.
Article En | MEDLINE | ID: mdl-37764861

Thymus atlanticus (Lamiaceae) is a plant endemic to the Mediterranean basin that is found in significant quantities in the arid regions of Morocco. Thymus atlanticus is used in traditional medicine to treat infectious and non-infectious diseases. It is also used for the isolation of essential oils and for the seasoning of many dishes in the Mediterranean diet. The major constituents of Thymus atlanticus are saponins, flavonoids, tannins, alkaloids, various simple and hydroxycinnamic phenolic compounds, and terpene compounds. Several of these compounds act on signaling pathways of oxidative stress, inflammation, and blood sugar, which are parameters often dysregulated during aging. Due to its physiochemical characteristics and biological activities, Thymus atlanticus could be used for the prevention and/or treatment of age-related diseases. These different aspects are treated in the present review, and we focused on phytochemistry and major age-related diseases: dyslipidemia, cardiovascular diseases, and type 2 diabetes.

8.
J Pers Med ; 13(5)2023 Apr 28.
Article En | MEDLINE | ID: mdl-37240924

Breast cancer (BC) is the most common female cancer in terms of incidence and mortality worldwide. Tamoxifen (Nolvadex) is a widely prescribed, oral anti-estrogen drug for the hormonal treatment of estrogen-receptor-positive BC, which represents 70% of all BC subtypes. This review assesses the current knowledge on the molecular pharmacology of tamoxifen in terms of its anticancer and chemo-preventive actions. Due to the importance of vitamin E compounds, which are widely taken as a supplementary dietary component, the review focuses only on the potential importance of vitamin E in BC chemo-prevention. The chemo-preventive and onco-protective effects of tamoxifen combined with the potential effects of vitamin E can alter the anticancer actions of tamoxifen. Therefore, methods involving an individually designed, nutritional intervention for patients with BC warrant further consideration. These data are of great importance for tamoxifen chemo-prevention strategies in future epidemiological studies.

9.
Environ Geochem Health ; 45(6): 3933-3946, 2023 Jun.
Article En | MEDLINE | ID: mdl-36626073

Global water consumption has grown twice as fast as the population. Wastewater is therefore a valuable and renewable source and provides additional water for priority uses. Wastewater can also be a source of pollution; thus, its physico-chemical and biological compositions can present major risks to the environment and human health. The objective of this study was to assess the status of irrigation waters in terms of salinization, accumulation of metallic elements, and microbiological contamination by parasites and pathogenic bacteria. The study focused on the surface water of Oued Fès used for irrigation located downstream of the industrial zone of Doukkarat and upstream of the industrial zone of Ain Noukbi (wastewater) before the confluence with the Oued Sebou, as well as on the treated wastewater of the wastewater treatment plant. The physico-chemical and microbiological analyses were carried out in two periods: summer and winter. Metals were analyzed by ICP-AES. The chemical and bacteriological quality of the wastewater and treated wastewater was found to be poor. These were characterized by organic pollution, including biodegradable pollutants, while upstream the organic residues were not biodegradables. COD, BOD5, Kjeldahl nitrogen, as well as chloride ion (Cl-) are above the standard values. The highest concentrations of Cd, at 850 µg/l, Cu, at 690 µg/l and Mn, at 470 µg/l, largely exceed the international standards and requirements. In addition to fecal contamination, characterized by total coliforms and thermo-tolerant coliforms, other pathogens were present, including helminth eggs, both in the wastewater and in the treated wastewater. Other pathogens, such as Vibrio cholera, were found at all three sites whether in winter or summer, with the exception of the downstream of Oued Fez in winter. As for Salmonella, it was present in treated wastewater during the winter only. The water used for irrigation upstream of Oued Fez and the treated wastewater have poor to very poor quality. Therefore, for a better use of these waters, it is necessary to ensure their regular treatment in order to minimize the impacts on the environment and human health.


Wastewater , Water Pollutants, Chemical , Humans , Morocco , Environmental Pollution/analysis , Metals/toxicity , Metals/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Water/analysis , Environmental Monitoring , Agricultural Irrigation
10.
Article En | MEDLINE | ID: mdl-35538807

AIMS: The present study aimed to provide summarized data related to the phytocompouds improving glucose uptake in the diabetic state. BACKGROUND: Glucose uptake in peripheral tissues such as skeletal muscle and adipose tissue is considered as an important step in the regulation of glucose homeostasis. Reducing high blood glucose levels in diabetic patients via targeting peripheral glucose uptake is a promising strategy to develop new antidiabetic medications derived from natural products. OBJECTIVE: The current review focused on antidiabetic natural phytocompounds acting on glucose uptake in adipocytes and skeletal muscles to highlight their phytochemistry, the mechanistic pathway involved, toxicity, and clinical assessment. METHODS: A systematic search was conducted in the scientific database with specific keywords on natural phytocompounds demonstrated to possess glucose uptake stimulating activity in vitro or ex vivo during the last decade. RESULTS: In total, 195 pure molecules and 7 mixtures of inseparable molecules isolated from the plants kingdom, in addition to 16 biomolecules derived from non-herbal sources, possess a potent glucose uptake stimulating capacity in adipocytes and/or skeletal muscles in adipocytes and/or skeletal muscles in vitro or ex vivo. Molecular studies revealed that these plant-derived molecules induced glucose uptake via increasing GLUT-4 expression and/or translocation through insulin signaling pathway, AMPK pathway, PTP1B activity inhibition or acting as partial PPARγ agonists. These phytocompounds were isolated from 91 plants, belonging to 57 families and triterpenoids are the most sous-class of secondary metabolites showing this activity. Among all the phytocompounds listed in the current review, only 14 biomolecules have shown an interesting activity against diabetes and its complications in clinical studies. CONCLUSION: Epicatechin, catechin, epigallocatechin 3-gallate, quercetin, quercetin 3-glucoside, berberine, rutin, linoleic acid, oleanolic acid, oleic acid, chlorogenic acid, gallic acid, hesperidin, and corosolic acid are promising phytocompounds that showed great activity against diabetes and diabetes complications in vitro and in vivo. However, for the others phytocompounds further experimental studies followed by clinical trials are needed. Finally, foods rich in these compounds cited in this review present a healthy diet for diabetic patients.


Glucose , Hypoglycemic Agents , Humans , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/chemistry , Insulin/metabolism , Quercetin/pharmacology , Signal Transduction , Biological Transport/drug effects
11.
Foods ; 11(21)2022 Oct 26.
Article En | MEDLINE | ID: mdl-36359976

This work aimed to characterize and compare the physicochemical, ascorbic acid, phenolic, and flavonoid compounds, as well as the antioxidant properties, pollen spectra, and sugar profiles of twenty-three organic honeys produced in the Middle Atlas of Morocco. As results, the pollen analysis showed 22 taxa and revealed the dominance of Ziziphus lotus pollens for all monofloral honeys. The moisture content ranged from 15.9 to 19.0%, pH values werebetween 3.9 and 4.8, electrical conductivity varied from 100 to 581 µs/cm, ash content varied from 0.1 to 2.4%, and the invertase activity ranged from 3.5 to 36 U/kg. Moreover, hydroxymethylfurfural(HMF) varied from 1.2 to 13.5 mg/kg, which confirmed the freshness of our honey samples. For the sugar profiles, there were no significant differences between the examined groups of honeys (p > 0.05) for both fructose and glucose. Additionally, our study showed good antioxidant properties (total antioxidant activity ranged from 34.18 to 131.20 mg AAE/g; DPPH IC50 values ranged from 8.14 to 45.20 mg/mL; ABTS IC50 values ranged from 8.19 to 32.76 mg/mL) and high amounts of phenolic compounds ranging between 20.92 ± 0.03 and 155.89 ± 0.03 mg GAE/100 g, respectively; flavonoid compounds ranged from 5.52 to 20.69 mg QE/100 g, and ascorbic acid ranged from 8.01 to 23.26 mg/100 g. Overall, the proximate composition and the general characterization of organic monofloral and polyfloral honeys as sustainable and health-promising functional products may increase their commercial values, promote their marketability, and might have a significant impact on the basic circular/sustainable economy as a solid lever for solidarity economic development, especially in the rural/poor Moroccan communities. The investigated features may allow and support the incorporation of Moroccan organic honeys and their biovaluable ingredients in the nutraceutical and food industries for multiple purposes.

12.
Article En | MEDLINE | ID: mdl-36204117

Background: Multidrug resistance (MDR) and extensively drug-resistant (XDR) are now the biggest threats to human beings. Alternative antimicrobial regimens to conventional antibiotic paradigms are extensively searched. Although Cistus extracts have long been used for infections in traditional folk medicines around the world, their efficacy against resistant bacteria still needs to be elucidated. We aim to investigate the antibiotic susceptibility profiles of clinical strains Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae (acronym "ESKAPE"), and their resistance mechanisms by PCR, as well as their sensitivity to C. monspeliensis (CM) and C. salviifolius (CS) methanol extracts and their fractions. Methods: Antibiotic susceptibility profile and resistance mechanism were done by antibiogram and PCR. Fractions of CM and CS were obtained using maceration and Soxhlet; their antibacterial activities were evaluated by determining inhibition zone diameter (IZD), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). Results: Results revealed that all strains were XDR except S. aureus, which was MDR. The PCR indicates the presence of gene-mediated resistance (bla CTX-M, bla SHV, bla OXA-48, bla NDM, bla OXA-51, bla OXA-58, bla IMP, bla VIM, and bla mecA). Also, maceration was slightly better for bioactivity preservation. Overall, the extracts of CM (IZD = 20 mm, MIC = 0.01 mg/mL) were more active than those of CS. All extracts inhibited MRSA (methicillin-resistant Staphylococcus aureus) and ERV (Enterococcus faecium Vancomycin-Resistant) with interesting MICs. The ethyl acetate fraction manifested great efficacy against all strains. Monoterpene hydrocarbons and sesquiterpenes oxygenated were the chemical classes of compounds dominating the analyzed fractions. Viridiflorol was the major compound in ethyl acetate fractions of 59.84% and 70.77% for CM and CS, respectively. Conclusions: The superior activity of extracts to conventional antibiotics was seen for the first time in the pathogens group, and their bactericidal effect could be a promising alternative for developing clinical antibacterial agents against MDR and XDR ESKAPE bacteria.

13.
Antioxidants (Basel) ; 11(8)2022 Aug 03.
Article En | MEDLINE | ID: mdl-36009233

Centaurea calcitrapa has been intensively utilized in ethnomedicinal practices as a natural therapeutic recipe to cure various ailments. The current study aimed to chemically characterize ethanolic extract of C. calcitrapa (EECC) aerial parts (leaves and shoots) by use of gas chromatography-mass spectrometry analyses (GC-MS) and investigate its antioxidant and in vitro anticancer activities, elucidating the underlying molecular mechanism by use of flow cytometry-based fluorescence-activated cell sorting (FACS) and conducting in silico assessment of binding inhibitory activities of EECC major compounds docked to caspase-3. CG-MS profiling of EECC identified a total of 26 major flavonoids and polyphenolic compounds. DPPH and ABTS assays revealed that EECC exhibits potent antioxidant activity comparable to standard reducing agents. Results of the proliferation assay revealed that EECC exhibit potent, dose-dependent cytotoxic activities against triple-positive (MCF-7) and triple-negative (MDA-MB-231) breast cancer cell models, with IC50 values of 1.3 × 102 and 8.7 × 101 µg/mL, respectively. The observed cytotoxic effect was specific to studied cancer cells since EECC exhibited minimal (~<10%) cytotoxicity against MCF-12, a normal breast cell line. FACS analysis employing annexin V-FITC/propidium iodide double labeling demonstrated that the observed anti-proliferative activity against MCF-7 and MDA-MB-231 was mediated via apoptotic as well as necrotic signaling transduction processes. The increase in fluorescence intensity associated with DCFH oxidation to DCF, as reported by FACS, indicated that apoptosis is caused by generation of ROS. The use of caspase-3-specific fluorogenic substrate revealed a dose-dependent elevation in caspase-3 substrate-cleavage activity, which further supports EECC-mediated apoptosis in MCF-7 cells. The major EECC compounds were examined for their inhibitory activity against caspase-3 receptor (1HD2) using molecular docking. Three compounds exhibited the highest glide score energy of −5.156, −4.691 and −4.551 kcal/mol, respectively. Phenol, 2,6-dimethoxy established strong binding in caspase-3 receptor of hydrogenic type, with residue ARG 207 and of PI-PI stacking type with residue HIS 121. By contract, hexadecenoic acid showed 3 H-bond with the following residues: ASN 615, ASN 616a and THR 646. Taken together, the current findings reveal that EECC exhibits significant and specific cytotoxicity against breast cancer cells mediated by the generation of ROS and culminating into necrosis and apoptosis. Further investigations of the phytoconstituents-rich C. calcitrapa are therefore warranted against breast as well as other human cancer cell models.

14.
Nutrients ; 14(3)2022 Jan 29.
Article En | MEDLINE | ID: mdl-35276955

Saffron (Crocus sativus L.) is a medicinal plant, originally cultivated in the East and Middle East, and later in some Mediterranean countries. Saffron is obtained from the stigmas of the plant. Currently, the use of saffron is undergoing a revival. The medicinal virtues of saffron, its culinary use and its high added value have led to the clarification of its phytochemical profile and its biological and therapeutic characteristics. Saffron is rich in carotenoids and terpenes. The major products of saffron are crocins and crocetin (carotenoids) deriving from zeaxanthin, pirocrocin and safranal, which give it its taste and aroma, respectively. Saffron and its major compounds have powerful antioxidant and anti-inflammatory properties in vitro and in vivo. Anti-tumor properties have also been described. The goal of this review is to present the beneficial effects of saffron and its main constituent molecules on neuropsychiatric diseases (depression, anxiety and schizophrenia) as well as on the most frequent age-related diseases (cardiovascular, ocular and neurodegenerative diseases, as well as sarcopenia). Overall, the phytochemical profile of saffron confers many beneficial virtues on human health and, in particular, on the prevention of age-related diseases, which is a major asset reinforcing the interest for this medicinal plant.


Crocus , Plants, Medicinal , Aging , Crocus/chemistry , Humans , Nutrients , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
15.
Article En | MEDLINE | ID: mdl-32767952

AIM: This study aimed to investigate the effect of Micromeria graeca on blood glucose levels and lipid parameters in an experimental model of diabetes. BACKGROUND: Micromeria graeca (L.) Benth. ex Rchb is a medicinal plant used in Morocco for the treatment of several pathologies including diabetes. OBJECTIVE: This study aimed to evaluate the antihyperglycemic and antihyperlipidemic effects of the aqueous extract of Micromeria graeca (M. graeca) aerial parts (AEMG) under physiological (normal rats) and pathological (STZ-induced diabetic rats) conditions. Additionally, we analyzed the phytochemical composition and antioxidant capacity. METHODS: The effects of the acute and sub-chronic administration of AEMG (20 mg/kg) on blood glucose levels and lipid profiles were evaluated in normal and streptozotocin-induced diabetic rats. Moreover, the phytochemical analysis was carried with standard tests and estimation of total phenolics compounds by Folin-Ciocalteu reagent. The antioxidant activity was realized by the DPPH method. RESULTS: Single oral administration of M. graeca aqueous extract decreased blood glucose levels 4 and 6 hours (p<0.01) after treatment in diabetic rats. In accordance, the repeated oral administration of M. graeca showed a significant reduction in blood glucose levels in diabetic rats since the second day to the end of the period experiment (p<0.0001). In addition, two weeks of treatment with M. graeca reduced total cholesterol levels (p<0.05) with a significant increase of HDL-c level (p<0.01) in diabetic rats. Moreover, M. graeca scavenged DPPH radical in a dose-dependent manner (IC50=0.48 mg/ml), whereas IC50 was 0.55 mg/ml for BHT. Phytochemical analysis showed the richness of Micromeria graeca on polyphenols (281.94±4.61 mg GAE/1 g), flavonoids, tannins, glycosides, saponins, sterols, sesquiterpenes, and terpenoids. CONCLUSION: AEMG exhibits antihyperglycemic and antihyperlipidemic activities in STZ-induced diabetic rats and a potent antioxidant capacity.


Blood Glucose/drug effects , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/therapeutic use , Lamiaceae , Plant Extracts/therapeutic use , Animals , Blood Glucose/metabolism , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , Male , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Rats , Rats, Wistar , Streptozocin , Water
16.
East Mediterr Health J ; 26(9): 1070-1077, 2020 Sep 24.
Article En | MEDLINE | ID: mdl-33047798

BACKGROUND: Dietary patterns, eating behaviour and lifestyle are changing in Morocco. It would be interesting to identify and evaluate this transition in its Mediterranean context. AIMS: To assess adherence to the Mediterranean diet (MedDiet) and analyse associated factors in school-age children living in oasis environments. METHODS: A cross-sectional survey was conducted among 3684 school-age children between May 2015 and November 2017 in Tafilalet Oasis. The mean age was 9.81 (2.13), 51.3% were girls, and 62.7% were from urban areas. Participants were recruited from public primary schools. Adherence to the MedDiet was evaluated by Mediterranean Diet Quality (KIDMED) index. Socioeconomic characteristics and anthropometric measurements were obtained. RESULTS: Only 2.12% had a poor KIDMED index, 57.9% had an average index and 39.98% had a high index. Maternal ethnicity was associated with degree of adherence to the MedDiet. Poor adherence was seen in 2.17% of urban participants compared with 2.04% of rural participants. Participants with high income were more likely to have good adherence to the MedDiet. Low levels of parental education were more likely to result in higher levels of poor adherence. There was no significant correlation between body weight and KIDMED index. CONCLUSIONS: Most of the study population had medium to good adherence to MedDiet, but low KIDMED index was observed. Interventions and strategies should be devised for preserving and promoting healthy eating habits in this target population.


Diet, Mediterranean , Body Mass Index , Child , Cross-Sectional Studies , Feeding Behavior , Female , Humans , Morocco , Schools , Surveys and Questionnaires
17.
Article En | MEDLINE | ID: mdl-31729295

OBJECTIVE: This study aimed to evaluate the effect of the aqueous extract of Anvillea radiate (A. radiata) aerial parts (AEAR) on arterial blood pressure in normotensive and hypertensive rats. METHODS: The effect of the acute and sub-chronic administration of AEAR on the following blood pressure parameters: systolic blood pressure (SBP), mean blood pressure (MBP), diastolic blood pressure (DBP), and heart rate (HR) was evaluated in normotensive and L-NAME induced hypertensive rats. In the second experiment, the vasorelaxant effect of AEAR was assessed in isolated aortic rings from rats with functional endothelium pre-contracted with epinephrine (EP) or KCl, and six antagonists/ inhibitors were used to explore the mechanisms of action involved in the vasorelaxant effect. In order to determine the phytochemical contents of Anvillea radiata, HPLC-ESI-MS analysis was conducted. RESULTS: Daily oral administration of AEAR (100 mg/kg) provoked a significant decrease in SBP, MBP, and DBP without affecting HR in hypertensive rats. In addition, AEAR (0.08-0.64 mg/ml) revealed a vasorelaxant effect in thoracic aortic rings pre-contracted by EP (10 µM) or KCl (80 mM). This effect was reduced in the presence of Nifedipine, L-Name or Methylene blue. The polyphenolic compounds of AEAR were determined. CONCLUSION: This study revealed that AEAR possesses a potent antihypertensive activity and its vasorelaxant activity seems to be mediated through Ca2+ channels, direct nitric oxide (NO), and NO/cGMP pathways. Chlorogenic acid and caffeic acid identified in A. radiata could be at least partially responsible for the antihypertensive activity of this extract.


Antihypertensive Agents/therapeutic use , Asteraceae/chemistry , Hypertension/drug therapy , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Animals , Antihypertensive Agents/isolation & purification , Blood Pressure/drug effects , Chromatography, High Pressure Liquid , Hypertension/chemically induced , Hypertension/physiopathology , Male , NG-Nitroarginine Methyl Ester , Phytotherapy , Plant Extracts/analysis , Rats , Rats, Wistar , Spectrometry, Mass, Electrospray Ionization
18.
Article En | MEDLINE | ID: mdl-30421687

AIMS: Arganimide A (4,4-dihydroxy-3,3-imino-di-benzoic acid) is a compound belonging to a family of aminophenolics found in fruit of Argania spinosa. The purpose of this study was to investigate the glucose and lipid lowering activity of Arganimide A (ARG A). METHODS: The effect of a single dose and daily oral administration of Arganimide A (ARG A) on blood glucose levels and plasma lipid profile was tested in normal and streptozotocin (STZ) diabetic rats at a dose of 2 mg/kg body weight. RESULTS: Single oral administration of ARG A reduced blood glucose levels from 26.50±0.61 mmol/L to 14.27±0.73 mmol/L (p<0.0001) six hours after administration in STZ diabetic rats. Furthermore, blood glucose levels were decreased from 5.35±0.30 mmol/L to 3.57±0.17 mmol/L (p<0.0001) and from 26.50±0.61 mmol/L to 3.67±0.29 mmol/L (p<0.0001) in normal and STZ diabetic rats, respectively, after seven days of treatment. Moreover, no significant changes in body weight in normal and STZ rats were shown. According to the lipid profile, the plasma triglycerides levels were decreased significantly in diabetic rats after seven days of ARG treatment (p<0.05). Moreover, seven days of ARG A treatment decreased significantly the plasma cholesterol concentrations (p<0.001). CONCLUSION: ARG A possesses glucose and lipid-lowering activity in diabetic rats and this natural compound may be beneficial in the treatment of diabetes.


Blood Glucose/drug effects , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/therapeutic use , Hypolipidemic Agents/therapeutic use , Plant Extracts/therapeutic use , Sapotaceae , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/blood , Fruit , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/isolation & purification , Hypolipidemic Agents/pharmacology , Male , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Rats , Rats, Wistar
19.
J Integr Med ; 16(3): 185-191, 2018 05.
Article En | MEDLINE | ID: mdl-29631911

OBJECTIVE: Anabasis aretioides (Coss & Moq.), a Saharan plant belonging to Chenopodiaceae family, is widely distributed in semi-desert areas from the Tafilalet region of Morocco. This plant is extensively used by local population against diabetes and cardiovascular disorders. The purpose of the study was to investigate the effect of the aqueous A. aretioides extract on lipid metabolism in normal and streptozotocin (STZ)-induced diabetic rats and to identify the polyphenolic compounds present. In addition, the in vitro antioxidant activity of the aqueous A. aretioides extract was also evaluated. METHODS: The effect of an aerial part aqueous extract (APAE) of A. aretioides (5 mg/kg of lyophilized A. aretioides APAE) on plasma lipid profile was investigated in normal and STZ-induced diabetic rats (n = 6) after once daily oral administration for 15 days. The aqueous extract was tested for its 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity. Polyphenolic compounds in the extracts were definitively characterized by high-performance liquid chromatography-diode array detection-electrospray ionization-mass spectrometry. RESULTS: In diabetic rats, oral administration of A. aretioides APAE provoked a significant decrease in both plasma cholesterol and triglyceride levels from the first to the second week (P < 0.01). A significant decrease on plasma triglyceride levels was also observed in normal rats (P < 0.01), where the reduction was 53%. In addition, the phytochemical analysis revealed the presence of 12 polyphenolic compounds. Moreover, according to the DPPH radical-scavenging activity, the aqueous extract showed an in vitro antioxidant activity. CONCLUSION: Aqueous A. aretioides APAE exhibits lipid-lowering and in vitro antioxidant activities. Many polyphenols were present in this extract and these phytoconstituents may be involved in the pharmacological activity of this plant.


Chenopodiaceae/chemistry , Diabetes Mellitus, Experimental/drug therapy , Hypolipidemic Agents/administration & dosage , Hypolipidemic Agents/chemistry , Phytochemicals/administration & dosage , Phytochemicals/chemistry , Polyphenols/administration & dosage , Polyphenols/chemistry , Animals , Antioxidants/administration & dosage , Cholesterol/blood , Chromatography, High Pressure Liquid , Diabetes Mellitus, Experimental/blood , Humans , Male , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Rats , Rats, Wistar , Streptozocin , Tandem Mass Spectrometry , Triglycerides/blood
20.
Biomedicines ; 6(1)2018 Feb 12.
Article En | MEDLINE | ID: mdl-29439506

Bryonolic acid (BrA) is a pentacyclic triterpene present in several plants used in African traditional medicine such as Anisophyllea dichostyla R. Br. Here we investigated the in vitro anticancer properties of BrA. We report that BrA inhibits acyl-coA: cholesterol acyl transferase (ACAT) activity in rat liver microsomes in a concentration-dependent manner, blocking the biosynthesis of the cholesterol fatty acid ester tumour promoter. We next demonstrated that BrA inhibits ACAT in intact cancer cells with an IC50 of 12.6 ± 2.4 µM. BrA inhibited both clonogenicity and invasiveness of several cancer cell lines, establishing that BrA displays specific anticancer properties. BrA appears to be more potent than the other pentacyclic triterpenes, betulinic acid and ursolic acid studied under similar conditions. The inhibitory effect of BrA was reversed by exogenous addition of cholesteryl oleate, showing that ACAT inhibition is responsible for the anticancer effect of BrA. This report reveals new anticancer properties for BrA.

...