Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Sci Rep ; 14(1): 2347, 2024 01 29.
Article En | MEDLINE | ID: mdl-38281987

Schistosoma mekongi, a significant schistosome parasite, has various life stages, including egg, cercaria, female, and male, that play crucial roles in the complex life cycle. This study aimed to explore the microRNA (miRNA) profiles across these developmental stages to understand their potential functions and evolutionary significance, which have not been studied. Pre-processed sequencing reads of small RNA (sRNA) were obtained, and annotations were performed against the S. japonicum reference miRNA database. Results indicated marked variations in miRNA profiles across different life stages, with notable similarities observed between female and male S. mekongi. Principal Coordinate Analysis (PCoA) and unsupervised clustering revealed distinct miRNA signatures for each stage. Gene ontology (GO) analysis unveiled the potential roles of these miRNAs in various biological processes. The differential expression of specific miRNAs was prominent across stages, suggesting their involvement in crucial developmental processes. Furthermore, orthologous miRNA analysis against various worm species revealed distinct presence-absence patterns, providing insights into the evolutionary relationships of these miRNAs. In conclusion, this comprehensive investigation into the miRNA profiles of S. mekongi offers valuable insights into the functional and evolutionary aspects of miRNAs in schistosome biology.


MicroRNAs , Schistosoma japonicum , Animals , Male , Female , Schistosoma japonicum/genetics , MicroRNAs/genetics , Life Cycle Stages/genetics , RNA, Helminth/genetics
2.
Biomed Rep ; 19(4): 70, 2023 Oct.
Article En | MEDLINE | ID: mdl-37719681

Breast cancer is a leading cause of cancer-related deaths worldwide. Moreover, standard treatments are limited, so new alternative treatments are required. Thai traditional formulary medicine (TTFM) utilizes certain herbs to treat different diseases due to their dominant properties including anti-fungal, anti-bacterial, antigenotoxic, anti-inflammatory and anti-cancer actions. However, very little is known about the anti-cancer properties of TTFM against breast cancer cells and the underlying molecular mechanism has not been elucidated. Therefore, the present study, evaluated the metabolite profiles of TTFM extracts, the anti-cancer activities of TTFM extracts, their effects on the apoptosis pathway and associated gene expression profiles. Liquid chromatography with tandem mass spectroscopy analysis identified a total of 226 compounds within the TTFM extracts. Several of these compounds have been previously shown to have an anti-cancer effect in certain cancer types. The MTT results demonstrated that the TTFM extracts significantly reduced the cell viability of the breast cancer 4T1 and MDA-MB-231 cell lines. Moreover, an apoptosis assay, demonstrated that the TTFM extracts significantly increased the proportion of apoptotic cells. Furthermore, the RNA-sequencing results demonstrated that 25 known genes were affected by TTFM treatment in 4T1 cells. TTFM treatment significantly up-regulated Slc5a8 and Arhgap9 expression compared with untreated cells. Moreover, Cybb, and Bach2os were significantly downregulated after TTFM treatment compared with untreated cells. Reverse transcription-quantitative PCR demonstrated that TTFM extract treatment significantly increased Slc5a8 and Arhgap9 mRNA expression levels and significantly decreased Cybb mRNA expression levels. Moreover, the mRNA expression levels of Bax and Casp9 were significantly increased after TTFM treatment in 4T1 cells compared with EpH4-Ev cells. These findings indicated anti-breast cancer activity via induction of the apoptotic process. However, further experiments are required to elucidate how TTFM specifically regulates genes and proteins. This study supports the potential usage of TTFM extracts for the development of anti-cancer drugs.

3.
Genomics Inform ; 20(2): e21, 2022 Jun.
Article En | MEDLINE | ID: mdl-35794701

The influenza A viruses have high mutation rates and cause a serious health problem worldwide. Therefore, this study focused on genome characterization of the viruses isolated from Thai patients based on the next-generation sequencing technology. The nasal swabs were collected from patients with influenza-like illness in Thailand during 2017-2018. Then, the influenza A viruses were detected by reverse transcription-quantitative polymerase chain reaction and isolated by MDCK cells. The viral genomes were amplified and sequenced by Illumina MiSeq platform. Whole genome sequences were used for characterization, phylogenetic construction, mutation analysis and nucleotide diversity of the viruses. The result revealed that 90 samples were positive for the viruses including 44 of A/ H1N1 and 46 of A/H3N2. Among these, 43 samples were successfully isolated and then the viral genomes of 25 samples were completely amplified. Finally, 17 whole genomes of the viruses (A/H1N1, n=12 and A/H3N2, n=5) were successfully sequenced with an average of 232,578 mapped reads and 1,720 genome coverage per sample. Phylogenetic analysis demonstrated that the A/H1N1 viruses were distinguishable from the recommended vaccine strains. However, the A/H3N2 viruses from this study were closely related to the recommended vaccine strains. The nonsynonymous mutations were found in all genes of both viruses, especially in hemagglutinin (HA) and neuraminidase (NA) genes. The nucleotide diversity analysis revealed negative selection in the PB1, PA, HA, and NA genes of the A/H1N1 viruses. High-throughput data in this study allow for genetic characterization of circulating influenza viruses which would be crucial for preparation against pandemic and epidemic outbreaks in the future.

4.
Sci Rep ; 11(1): 14280, 2021 07 12.
Article En | MEDLINE | ID: mdl-34253790

Long-tailed macaques (Macaca fascicularis), distributed in Southeast Asia, are generally used in biomedical research. At present, the expansion of human communities overlapping of macaques' natural habitat causes human-macaque conflicts. To mitigate this problem in Thailand, the National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU), was granted the permit to catch the surplus wild-born macaques and transfer them to the center. Based on the fact that the diets provided and the captive environments were different, their oral-gut microbiota should be altered. Thus, we investigated and compared the oral and fecal microbiome between wild-born macaques that lived in the natural habitats and those transferred to and reared in the NPRCT-CU for 1 year. The results from 16S rRNA high-throughput sequencing showed that the captive macaques had distinct oral-gut microbiota profiles and lower bacterial richness compared to those in wild macaques. The gut of wild macaques was dominated by Firmicutes which is probably associated with lipid absorption and storage. These results implicated the effects of captivity conditions on the microbiome that might contribute to crucial metabolic functions. Our study should be applied to the animal health care program, with respect to microbial functions, for non-human primates.


Firmicutes/metabolism , Gastrointestinal Microbiome , Macaca/microbiology , Macaca/physiology , Animals , Biodiversity , Body Weight , Ecosystem , Female , High-Throughput Nucleotide Sequencing , Male , Metagenomics , Microbiota , Mouth Mucosa/microbiology , Phylogeny , RNA, Ribosomal, 16S/metabolism , Thailand , Zoology
5.
BMC Neurol ; 20(1): 372, 2020 Oct 10.
Article En | MEDLINE | ID: mdl-33038923

BACKGROUND: Acute vertigo is a common presentation of inner ear disease. However, it can also be caused by more serious conditions, especially posterior circulation stroke. Differentiating between these two conditions by clinical presentations and imaging studies during the acute phase can be challenging. This study aimed to identify serum microRNA (miRNA) candidates that could differentiate between posterior circulation stroke and peripheral vertigo, among patients presenting with acute vertigo. METHODS: Serum levels of six miRNAs including miR-125a-5p, miR-125b-5p, miR-143-3p, miR-342-3p, miR-376a-3p, and miR-433-5p were evaluated. Using quantitative reverse-transcription polymerase chain reaction (RT-qPCR), the serum miRNAs were assessed in the acute phase and at a 90 day follow-up visit. RESULTS: A total of 58 patients with posterior circulation stroke (n = 23) and peripheral vertigo (n = 35) were included in the study. Serum miR-125a-5p (P = 0.001), miR-125b-5p (P <  0.001), miR-143-3p (P = 0.014) and miR-433-5p (P = 0.0056) were present at significantly higher levels in the acute phase, in the patients with posterior circulation infarction. Based on the area under the receiver operating characteristic curve (AUROC) only miR-125a-5p (0.75), miR-125b-5p(0.77), and miR-433-5p (0.71) had an acceptable discriminative ability to differentiate between the central and peripheral vertigo. A combination of miRNAs revealed no significant improvement of AUROC when compared to single miRNAs. CONCLUSION: This study demonstrated the potential of serum miR-125a-5p, miR-125b-5p, and miR-433-5p as biomarkers to assist in the diagnosis of posterior circulation infarction among patients presenting with acute vertigo.


Biomarkers/blood , MicroRNAs/blood , Stroke/diagnosis , Vertigo/diagnosis , Adult , Diagnosis, Differential , Female , Humans , Male , Middle Aged , ROC Curve , Stroke/blood , Vertigo/blood
6.
Fungal Genet Biol ; 144: 103468, 2020 11.
Article En | MEDLINE | ID: mdl-32980453

Cynomolgus macaque (Macaca fascicularis) is currently a common animal model for biomedical research. The National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU) translocated wild-borne macaques to reared colony for research purposes. At present, no studies focus on fungal microbiome (Mycobiome) of this macaque. The functional roles of mycobiome and fungal pathogens have not been elucidated. Thus, this study aimed to investigate and compare oral and fecal mycobiome between wild and captive macaques by using high-throughput sequencing on internal transcribed spacer 2 (ITS2) rDNA. The results showed that the mycobiome of wild macaque has greater alpha diversity. The fecal mycobiome has more limited alpha diversity than those in oral cavity. The community is mainly dominated by saprophytic yeast in Kasachstania genus which is related to aiding metabolic function in gut. The oral microbiome of most captive macaques presented the Cutaneotrichosporon suggesting the fungal transmission through skin-oral contact within the colony. The potential pathogens that would cause harmful transmission in reared colonies were not found in either group of macaques but the pathogen prevention and animal care is still important to be concerned. In conclusion, the results of gut mycobiome analysis in Thai cynomolgus macaques provide us with the basic information of oral and fecal fungi and for monitoring macaque's health status for animal care of research use.


DNA, Ribosomal Spacer/genetics , Fungi/genetics , Macaca fascicularis/microbiology , Mycobiome/genetics , Animals , Feces/microbiology , Fungi/classification , Fungi/isolation & purification , Genetic Variation/genetics , High-Throughput Nucleotide Sequencing , Macaca fascicularis/genetics , Mouth/microbiology
7.
Biomed Pharmacother ; 130: 110552, 2020 Oct.
Article En | MEDLINE | ID: mdl-32739741

Cratoxylum formosum Dyer is a medicinal plant widely found in Asia and commonly consumed for food and folk medicine. It is rich in phenolic compounds. The present study utilized water crude extract of C. formosum leaves to synthesize zinc oxide nanoparticles (ZnO NPs) by green synthesis. The synthesized ZnO NPs with the average electronic band gap ∼3  eV were obtained and found to either have spherical shape or sheet-like structures depending on synthesis process and concentration of crude extract. Higher concentration of C. formosum extract also eliminates impurity of Zn(OH)2 during the synthesis. Results from an agar disk diffusion assay demonstrated that all synthesized ZnO samples inhibited growth of Gram-positive bacteria, Bacillus subtilis and Staphylococcus epidermidis and Gram-negative bacterium, Escherichia coli. Furthermore, all synthesized ZnO demonstrated potent anti-cancer activity against non-melanoma skin cancer cells (A431) and the intermediary of cancerous keratinocytes (HaCaT) without affecting normal cell lines (Vero). In addition, we observed that the ZnO nanosheet offered stronger cytotoxicity effects against A431 than spherical shaped ZnO particles. Analysis of RNA-sequencing data revealed that synthesized ZnO nanosheets altered the number of genes in pathways involved in cancer and MAPK signaling pathways in A431 cells. Several isoforms of metallothionein transcripts were upregulated including transcripts involved in inflammatory responses whereas transcripts promoted cell proliferation and apoptosis were downregulated. Therefore, these studies firstly reported potential usage of the green-synthesized ZnO nanosheets from C. formosum extract for development of antibacterial substances or anticancer drugs.


Antineoplastic Agents, Phytogenic/pharmacology , Clusiaceae/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Skin Neoplasms/drug therapy , Zinc Oxide/chemical synthesis , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Cell Line, Tumor , Chlorocebus aethiops , Green Chemistry Technology , Humans , Keratinocytes/drug effects , Metal Nanoparticles , Microbial Sensitivity Tests , Plant Leaves/chemistry , Vero Cells
8.
Oncol Lett ; 18(3): 3128-3136, 2019 Sep.
Article En | MEDLINE | ID: mdl-31452790

Acanthus ebracteatus Vahl. is commonly consumed with the aim of curing cancer, inflammatory conditions and skin diseases in traditional Thai medicine. It is known to contain various phytochemicals; however, very little is known about the effects of A. ebracteatus protein hydrolysate on cancer cells, including its molecular mechanisms. The present study therefore investigated the anti-cancer activity of A. ebracteatus protein hydrolysates against epidermoid cancer of the skin cell line A431. Their effects on the apoptosis pathway and expression of proteins involved in the regulation of apoptosis, cell proliferation or cell cycle were also investigated. Crude extract of protein hydrolysate, partially purified peptides and purified peptides extracted from the aerial part of A. ebracteatus were administered to the A431 cells. The cytotoxicity effects were then determined using an MTT assay. As a result, A. ebracteatus protein hydrolysate significantly inhibited A431 cells with half inhibitory concentration equals to 425.9 ng protein/ml. By performing Annexin V assay, the partially purified peptides of A. ebracteatus were demonstrated to enhance the apoptosis pathway. Furthermore, western blot analysis revealed that the partially purified peptides of A. ebracteatus increased protein expression levels of RelA (p65) and Cyclin D1 proteins. However, A. ebracteatus did not increase the expression levels of p53-serine 15 phosphorylation (Ser15P).

9.
Am J Med Sci ; 354(4): 423-429, 2017 10.
Article En | MEDLINE | ID: mdl-29078848

BACKGROUND: Colon cancer is a major health problem worldwide. Available treatments such as surgery, chemotherapy, radiation and anticancer drugs are limited due to stage of cancer, side effects and altered biodistribution. The use of peptides extracted from natural products has appeared as a potential therapy. Gloriosa superba is known to contain colchicine and other alkaloids with anticancer activity. However, these peptides contained within the extracts have not been studied. This study, therefore, focuses on an investigation of anti-colon cancer activity from a partially purified protein hydrolysate of G superba rhizome. METHODS: Dried G superba rhizome was extracted using 0.5% sodium dodecyl sulfate and digested with pepsin. The protein hydrolysates with molecular weight lesser than 3kDa were collected and subjected for cell viability assay. Then, the partial purification of the protein hydrolysate was performed using reverse-phase high-performance liquid chromatography. Fractions containing anticancer peptides were investigated, and their effects on apoptosis and protein expression using apoptosis test and Western blot, respectively. RESULTS: Partially purified peptides of G superba rhizome demonstrated anticolon activity in SW620 cells by inducing apoptosis through upregulation of p53 and downregulation of nuclear factor kappa B (NF-κB). CONCLUSIONS: Consequently, G superba peptides showed high potential for further purification and development of anticolon therapeutics.


Antineoplastic Agents, Phytogenic/pharmacology , Colchicaceae/chemistry , Colonic Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Peptides/pharmacology , Plant Proteins/pharmacology , Rhizome/chemistry , Tumor Suppressor Protein p53/biosynthesis , Up-Regulation/drug effects , Animals , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Chlorocebus aethiops , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Humans , Peptides/chemistry , Plant Proteins/chemistry , Vero Cells
...