Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Bull Entomol Res ; 111(3): 331-339, 2021 Jun.
Article En | MEDLINE | ID: mdl-33323136

Termites are a significant pest of buildings, agriculture, and trees, and are mainly controlled by baiting. However, baiting systems are available for only lower termites (Rhinotermitidae) not for higher termites (Termitidae). Termite foraging behavior associated with baiting systems varies among species and families, and plays a significant role in baiting success. Here, foraging behavior of Odontotermes obesus (Blattodea: Termitidae: Macrotermitinae), a fungus-growing higher termite, was investigated relative to three bait-station sizes (small, medium, and large) containing different quantities of food. Significantly more workers recruited to large stations (470/station) compared to medium (246/station) and small (124/station) stations. Abundance of O. obesus in large and medium stations significantly positively correlated with relative humidity whereas negative but non-significant correlations were observed with temperature in large and medium stations. Total and continuous contacts with the stations increased with time and were greater in large stations. Station abandonment due to disturbance was significantly less in large stations (3%) followed by medium (9%) and small stations (20%). Our results suggest that large stations (≈8 litres volume) work best for population management of O. obesus and other related fungus-growing higher termites.


Feeding Behavior , Isoptera/physiology , Animals , Insect Control , Pest Control
2.
Chemosphere ; 261: 127702, 2020 Dec.
Article En | MEDLINE | ID: mdl-32750619

In this study, graphene oxide and titanium dioxide in combination with sodium alginate were used to synthesize the reduced graphene oxide-TiO2/sodium alginate (RGOT/SA) aerogel. The potential of RGOT/SA aerogel was evaluated for the photocatalytic degradation of ibuprofen and sulfamethoxazole and was compared with that of bare titanium dioxide nanoparticles. More than 99% removal of both the contaminants was obtained within 45-90 min by using the RGOT/SA aerogel under UV-A light. Mineralization of both the pollutants was also higher in case of RGOT/SA aerogel as compared to bare TiO2 nanoparticles. The optimal mass ratio of TiO2 nanoparticles with respect to graphene oxide was 2:1 in RGOT/SA aerogel in the presence of 1 wt% sodium alginate solution. High photodegradation of Ibuprofen was observed at neutral pH and acidic to neutral pH was found suitable for the photodegradation of sulfamethoxazole. Three-dimensional interconnected macroporous assembly, large surface area for settling TiO2 nanoparticles, efficient charge partitioning, and enhanced physical and chemical adsorption of ibuprofen and sulfamethoxazole on the surface of RGOT/SA aerogel were the significant characteristics of RGOT/SA aerogels. Moreover, ease of separation and recyclability of the RGOT/SA aerogel could further save the extra energy used to separate nanoparticles from the effluent.


Graphite/chemistry , Ibuprofen/chemistry , Sulfamethoxazole/chemistry , Adsorption , Alginates/chemistry , Catalysis , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Photolysis , Titanium , Ultraviolet Rays
3.
Saudi J Biol Sci ; 26(7): 1423-1428, 2019 Nov.
Article En | MEDLINE | ID: mdl-31762604

Biosolids can be effectively recycled and applied as soil amendments for agricultural crops because they contain several important micro and macronutrients including nitrogen, phosphorus, potassium, manganese. In the current study, we evaluated the effectiveness of seven biosoilds on different growth parameters of wheat crop. The biosolids used were lime stabilized, composted, liquid mesophilic anaerobically digested (liquid MAD), thermally dried mesophilic anaerobically digested (thermally dried MAD), thermally hydrolyzed mesophilic anaerobically digested (thermally hydrolysed MAD), dewatered mesophilic anaerobically digested (dewatered MAD) and thermally dried raw biosolids. We also analysed biosolids for their nutrient contents before application. The results revealed that different types of biosolids differed in nitrogen and phosphorous contents with highest contents observed in dewatered (5.70% nitrogen, 2.32% phosphorous) and liquid biosolids (2.35% phosphorous). The plant height, plant diameter and dry weight yield of wheat was increased with the increase in concentrations of biosolids. Liquid MAD resulted in maximum plant height of 120.35 ±â€¯3.23, 133.2 ±â€¯3.67 and 147.25 ±â€¯3.11 at 3.33, 6.66 and 9.99 tons/ha concentration. The highest plant diameter was recorded (1.05-1.45 cm) where mineral nitrogen was applied. The study will be helpful in replacing the synthetic fertilizer with biosolids to fulfil the nutritional requirements of agricultural crops.

4.
Saudi J Biol Sci ; 26(7): 1767-1771, 2019 Nov.
Article En | MEDLINE | ID: mdl-31762656

Cereals are staple food for many countries and are grown on millions of hectares of land, but much of the harvest is wasted due to losses by pests. To minimize these losses, many pesticides are used which are damaging to the environment and human health. There are debates to get rid of these chemicals but they are still in use at large scale. An alternative control strategy for insect pests in storage houses is the use of botanicals. In this study, four plant essential oils, two plant extracts, two herbicides, and two insecticides were used against Tribolium confusum and the comparison of toxicity was made by calculating LC50 and LT50 values. LC50 values were higher for abamectin (2.09-10.23 mg/L) and cypermethrin (3.41-11.78 mg/L) insecticides followed by neem essential oil (7.39-19.24 mg/L) and citrus extract (10.14-24.50 mg/L). However, LC50 values were maximum in case of jaman plant extract (22.38-176.42 mg/L) followed by two herbicides, Logran (19.66-39.72 mg/L) and Topik (29.09-47.67 mg/L) However, LC50 values were higher for topic herbicide (24.098 ppm) and jaman essential oil (16.383 ppm) after four days of treatment. Abamectin and cypermethrin insecticides, neem essential oil and citrus plant extract also killed adults of T. confusum quicker as compared other essential oils, extracts and herbicides. Results revealed that botanical formulations being environmentally safe could be used instead of highly hazardous pesticides for stored products' pests. This study also elaborates the non-host toxicity of herbicides commonly applied in our agroecosystem.

...