Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Clin Nutr ESPEN ; 62: 1-9, 2024 Aug.
Article En | MEDLINE | ID: mdl-38901928

BACKGROUND & AIMS: Resistant starch (RS) is a prebiotic fiber that has been scientifically shown to control the development of obesity. Prebiotic role of RS has also seen to be very important as it helps gut bacteria to regulate fermentation and fatty acid production. This study aimed to check the different levels of RS on glycemic index, oxidative stress and mineral absorption rate in healthy rat models. To evaluate these objectives, the trial was conducted for 40 days of follow up; 10 days were the adjustment period and the collection period over 30 days. METHODS: Thirty-six healthy female Wistar rats were divided into 4 groups of (9 animals each) NC (Normal Control: without resistant starch), RS0.20 (resistant starch: 0.20 g/kg body weight), RS0.30 (resistant starch: 0.30 g/kg body weight), RS0.40 (resistant starch: 0.40 g/kg body weight). All the diets were isocaloric and isonitroginous. RESULTS: The impact of different levels of RS on the dry-matter intake (DMI) presented statistically significant results (p ≤ 0.05): DMI was reduced in RS (0.02) fed rats as compared to NC rats in first 3 weeks; and after 4th and 5th weeks, there was a DMI reduction of 28% in RS (0.04) fed rats. Moreover, there was no significant increase in the nutrient intake in all RS diets. The dry-matter (DM) digestibility was statistically significantly (P ≤ 0·05), which increased in all rats fed with different level of RS. The weight loss showed statistically significant results: RS (0.04) exhibited 19 g reduction in weight as compared with NC rats. Significant increase was observed in total oxidant status (TOS), in all the RS fed rats when compared with NC rats. The levels of Mg, Ca, Fe and Zn were shown to be decrease in feces analysis, which proves their better absorbance in gut. Statistically significant increase was observed in antioxidant capacity, whereas significant decrease was observed in the total weight of the animals, showing the role of RS in controlling obesity. CONCLUSIONS: Overall, significant results were found in all dosage level of RS but long term administration of the higher dosage level (RS0.40) may need to be studied for enhanced results. RS can help improve insulin sensitivity in overweight adults.


Glycemic Index , Oxidative Stress , Rats, Wistar , Starch , Animals , Female , Rats , Minerals/metabolism , Dietary Fiber , Resistant Starch , Prebiotics , Intestinal Absorption , Diet
2.
Food Sci Nutr ; 12(5): 3097-3111, 2024 May.
Article En | MEDLINE | ID: mdl-38726410

Liver diseases, encompassing conditions such as cirrhosis, present a substantial global health challenge with diverse etiologies, including viral infections, alcohol consumption, and non-alcoholic fatty liver disease (NAFLD). The exploration of natural compounds as therapeutic agents has gained traction, notably the herbal remedy milk thistle (Silybum marianum), with its active extract, silymarin, demonstrating remarkable antioxidant and hepatoprotective properties in extensive preclinical investigations. It can protect healthy liver cells or those that have not yet sustained permanent damage by reducing oxidative stress and mitigating cytotoxicity. Silymarin, a natural compound with antioxidant properties, anti-inflammatory effects, and antifibrotic activity, has shown potential in treating liver damage caused by alcohol, NAFLD, drug-induced toxicity, and viral hepatitis. Legalon® is a top-rated medication with excellent oral bioavailability, effective absorption, and therapeutic effectiveness. Its active component, silymarin, has antioxidant and hepatoprotective properties, Eurosil 85® also, a commercial product, has lipophilic properties enhanced by special formulation processes. Silymarin, during clinical trials, shows potential improvements in liver function, reduced mortality rates, and alleviation of symptoms across various liver disorders, with safety assessments showing low adverse effects. Overall, silymarin emerges as a promising natural compound with multifaceted hepatoprotective properties and therapeutic potential in liver diseases.

3.
ACS Omega ; 9(7): 8221-8228, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38405494

There is a growing demand for nutritious food products that contain specific ingredients, such as long-chain polyunsaturated fatty acids (LCPUFAs). In the case of LCPUFAs, protection against lipid peroxidation is difficult, and microencapsulation emerges as an alternative. The aim of this research work is to develop mayonnaise containing spray-dried microcapsules (SDM). Fortified mayonnaise was developed using various treatments such as (T1) incorporating chia seed oil (CSO), (T2) incorporating fish oil (FO), (T3) incorporating blend of chia and fish oil, (T4) incorporating the SDM of CSO, (T5) incorporating the SDM of FO, and (T6) incorporating the SDM of chia and fish oil blend as well as controls. Thereafter, during the 15-day storage period, the fatty acids (FAs) composition, free fatty acids (FFAs), peroxide value (PV), and sensory properties of fortified mayonnaise were examined every 5 days. The overall results showed that the oxidative stability of mayonnaise formulated with SDM has been improved, and it can be used as a fortifying agent in the processing of many food products. Treatments containing SDM of up to 4% did not differ from the control in sensory analysis. Sensory scores of SDM samples showed a slight decrease in off-flavor scores and were in an acceptable range. Therefore, SDM developed from CSO and FO blends can be recommended for supplementation in different food products for long-time storage.

4.
ACS Omega ; 8(38): 35183-35192, 2023 Sep 26.
Article En | MEDLINE | ID: mdl-37780009

Even with healthy foods, there is still a need to protect the functionality during processing. The stabilization and enrichment of fish oil (FO) extracted from fish fillets using solvent extraction might make this healthy oil more available. FO was stabilized by mixing it with chia seed oil (CSO) at 50:50 at room temperature. The antioxidant properties of the blends were evaluated using the total phenolic content (TPC), free radical scavenging activity (DPPH), ferric reducing antioxidant potential (FRAP), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activities with FO and CSO as controls. The blends of FO and CSO increased the oxidative stability, while FO was the most susceptible to degradation. The stability and bioactivity of antioxidants against environmental factors were improved by using encapsulation. Response surface methodology (RSM) was used to optimize spray-drying operating conditions for spray-dried microcapsules (SDMs). The independent variables were the inlet air temperature (IAT), which varied from 125 to 185 °C; wall material (WM) concentration, which varied from 5 to 25%; pump speed (PS), which varied from 3 to 7 mL/min; and needle speed (NS), which varied from 3 to 11 s. The results indicated that the maximum antioxidant activity of SDM was obtained at 140 °C IAT, 10% WM, 4 mL/min PS, and 5 s NS, while the minimum value was obtained at 170 °C IAT, 20% WM, 6 mL/min PS, and 9 s NS. The IAT had a significant effect on the antioxidant activities, and the stability of SDMs was increased. These SDMs can be used in the formulation of food matrices due to their therapeutic and nutritional properties.

5.
Molecules ; 28(19)2023 Sep 29.
Article En | MEDLINE | ID: mdl-37836725

Oils derived from plant sources, mainly fixed oils from seeds and essential oil from other parts of the plant, are gaining interest as they are the rich source of beneficial compounds that possess potential applications in different industries due to their preventive and therapeutic actions. The essential oils are used in food, medicine, cosmetics, and agriculture industries as they possess antimicrobial, anticarcinogenic, anti-inflammatory and immunomodulatory properties. Plant based oils contain polyphenols, phytochemicals, and bioactive compounds which show high antioxidant activity. The extractions of these oils are a crucial step in terms of the yield and quality attributes of plant oils. This review paper outlines the different modern extraction techniques used for the extraction of different seed oils, including microwave-assisted extraction (MAE), pressurized liquid extraction (PLE), cold-pressed extraction (CPE), ultrasound-assisted extraction (UAE), supercritical-fluid extraction (SFE), enzyme-assisted extraction (EAE), and pulsed electric field-assisted extraction (PEF). For the identification and quantification of essential and bioactive compounds present in seed oils, different modern techniques-such as high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FTIR), gas chromatography-infrared spectroscopy (GC-IR), atomic fluorescence spectroscopy (AFS), and electron microscopy (EM)-are highlighted in this review along with the beneficial effects of these essential components in different in vivo and in vitro studies and in different applications. The primary goal of this research article is to pique the attention of researchers towards the different sources, potential uses and applications of oils in different industries.


Oils, Volatile , Plant Oils , Plant Oils/chemistry , Gas Chromatography-Mass Spectrometry , Oils, Volatile/chemistry , Seeds/chemistry , Antioxidants/chemistry
6.
Front Microbiol ; 14: 1209509, 2023.
Article En | MEDLINE | ID: mdl-37711688

Cheddar-type cheese produced from buttermilk had softer texture than standard cheddar cheese due to lower fat content of buttermilk. Fat is extremely important for the functional characteristics and optimum textural attributes of cheese. The effect of different fat contents of buttermilk on chemical characteristics of cheddar-type cheese is not previously investigated. This investigation was conducted to know the effect of different fat contents of buttermilk on fatty acids composition, organic acids, vitamins, lipolysis and sensory characteristics of cheddar-type cheese. Cheddar-type cheese was produced from buttermilk having 1, 1.75, 2.50 and 3.25% fat contents (control, T1, T2 and T3). Fat content of control, T1, T2 and T3 were 9.81, 16.34, 25.17 and 31.19%. Fatty acids profile was determined on GC-MS, organic acids and vitamin A and E were determined on HPLC. Free fatty acids, peroxide value and cholesterol were determined. Cheddar-style cheese produced from buttermilk (1% fat) showed that it had softer texture and lacking typical cheese flavor. Gas chromatography-mass spectrometry (GC-MS) analysis showed that long-chain unsaturated fatty acids in control, T1, T2 and T3 samples were 45.88, 45.78, 45.90 and 46.19 mg/100 g. High Performance Liquid Chromatography (HPLC) analysis showed that lactic acid, propionic acid, citric acid and acetic acid gradually and steadily increased during the storage interval of 90 days. At the age of 90 days, lactic acid in control, T1, T2 and T3 was 4,789, 5,487, 6,571 and 8,049 ppm, respectively. At the end of ripening duration of 90 days, free fatty acids in control, T1, T2 and T3 were 0.29, 0.31, 0.35 and 0.42% with no difference in peroxide value. Stability of vitamin A after 90 days storage control, T1, T2 and T3 was 87.0, 80.0, 94.0 and 91.0%. Flavor score of cheddar-type cheese produced from butter milk having 1.0, 2.5 and 3.25% fat content was 81, 89 and 91% of total score (9). Hence, it is concluded that cheddar-type cheese can be produced from buttermilk having 2.5 and 3.25% fat contents with acceptable sensory attributes. Application of buttermilk for the production of other cheese varieties should be studied.

7.
ACS Omega ; 8(32): 28932-28944, 2023 Aug 15.
Article En | MEDLINE | ID: mdl-37599927

Food is a crucial source for the endurance of individuals, and quality concerns of consumers are being raised with the progression of time. Edible coatings and films (ECFs) are increasingly important in biobased packaging because they have a prime role in enhancing the organoleptic characteristics of the food products and minimizing the spread of microorganisms. These sustainable ingredients are crucial for a safer and healthier environment. These are created from proteins, polysaccharides, lipids, plasticizers, emulsifiers, and active substances. These are eco-friendly since made from innocuous material. Nanocomposite films are also beginning to be developed and support networks of biological polymers. Antioxidant, flavoring, and coloring compounds can be employed to improve the quality, wellbeing, and stability of packaged foods. Gelatin-enhanced fruit and vegetable-based ECFs compositions have the potential to produce biodegradable films. Root plants like cassava, potato, and sweet potato have been employed to create edible films and coatings. Achira flour, amylum, yam, ulluco, and water chestnut have all been considered as novel film-forming ingredients. The physical properties of biopolymers are influenced by the characteristics, biochemical confirmation, compatibility, relative humidity, temperature, water resistance, and application procedures of the components. ECFs must adhere to all regulations governing food safety and be generally recognized as safe (GRAS). This review covers the new advancements in ECFs regarding the commitment of novel components to the improvement of their properties. It is expected that ECFs can be further investigated to provide innovative components and strategies that are helpful for global financial issues and the environment.

...