Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Biomed Pharmacother ; 152: 113212, 2022 Aug.
Article En | MEDLINE | ID: mdl-35653885

Highly mutable Coronavirus-19 continuously reconstructs its genome and renders prophylactic vaccines ineffective. The objective of the present study was to demonstrate the anti-viral efficacy and safety of the SOLVx therapeutics vaccine. The peptides were designed with Neo7Logix R&D and synthesized with Genescript GLP laboratory with 95 % purity. BALB/C mice were used to develop the HCoV-229E mutant coronavirus model and viral mRNA confirmation in the lung tissue was assessed with qPCR. Mice were euthanized and effects of treatment on various parameters (Viral mRNA in lungs, cytokine levels, PBMC differentiation, hematological and biochemical) were assessed with respective biological samples. Immuno-typing analysis of PBMCs by flowcytometry showed marked increase in T cell subsets, % of B cells and NK cell population in mice treated with SOLVx (Series 1) in a dose dependent manner. Serum immunoglobulin G, and M levels were increased significantly (P < 0.001). In the peptide treatment groups, there was a dose dependent statistically significant decrease in IL-6, IL-10 and TNF-α levels (P < 0.001). IFN-γ was elevated in treatment group significantly (P < 0.001). In conclusion, the qPCR results suggested that the SOLVx vaccine (Series 1) reduced the SARS-COV2 virus infectivity in a dose dependent manner. The humoral, cellular and functional activity of the SOLVx showed that it worked through multi-mechanistic targeting the virus evolution, offering immune response, defense and eradication of the SARS-COV2 virus.


COVID-19 , Vaccines , Animals , COVID-19/prevention & control , Epitopes , Leukocytes, Mononuclear , Mice , Mice, Inbred BALB C , RNA, Messenger , RNA, Viral , SARS-CoV-2 , T-Lymphocytes
2.
3 Biotech ; 11(5): 208, 2021 May.
Article En | MEDLINE | ID: mdl-33927996

Retinitis pigmentosa (RP) is a rare and heterogeneous group of inherited ocular diseases. However, the relationship between CACNA2D4 mutations and RP is not well understood. In this study, a Chinese autosomal recessive retinitis pigmentosa (arRP) pedigree was enrolled and targeted next-generation sequencing was employed for identifying the causative gene in the proband. These steps were followed by confirmatory Sanger sequencing and segregation analysis. RNA-sequencing (RNA-seq) data and semi-quantitative reverse transcription polymerase chain reaction analysis were then applied to examine the expressions in the human and mouse tissues. Novel compound heterozygous, deleterious missense variants of the CACNA2D4 gene, NM_172364.4: c.G955A (p.D319N) and c.A1822C (p.I608L), were identified in the arRP pedigree, co-segregating with the clinical phenotype in the patient. The CACNA2D4 protein is highly conserved among species. The CACNA2D4 mRNA expression showed the highest expression in the retina of humans and in the later four developmental stages/times of retinal tissues in mice, indicating its role in retina/eye functions and developments. This study is the first to identify novel compound heterozygous mutations c.G955A (p.D319N) and c.A1822C (p.I608L) in the CACNA2D4 gene. These might be disease-causing mutations, thereby extending the mutational spectra. The identification of pathogenic CACNA2D4 variants is expected to enhance our understanding of the genotype-phenotype correlations of arRP for disease diagnosis and genetic counseling. The relationship between the CACNA2D4 variants and diseases/phenotypes other than RP has also been reviewed and discussed in this paper.

3.
Eur J Pharmacol ; 803: 24-38, 2017 May 15.
Article En | MEDLINE | ID: mdl-28322833

Despite many treatment options, cancer remains a growing problem and has become the second leading cause of death globally. Here, we present fluorescence molecular tomography (FMT) data regarding the reversion of third generation co-cultured U87+DBTRG and patient-derived GBM tumor model after treatment with novel IL17A inhibitor named FLVM and FLVZ (organic derivatives of caffeic acid). FMT was used to determine tumor angiogenesis volume (assessment of number of blood vessel; the expression of angiogenic factors CD34 and other angiogenic cancer bio-markers) in U87+DBTRG and patient-derived gliomas. Immunohistochemistry was used to determine microvessel density [CD34], and cell proliferation [Ki67]. Western blot was used to assess the interleukin 17A [IL17A], vascular endothelial growth factor [VEGF] and hypoxia-inducible factor-1α [HIF-1α]. Antibody array was used to assess the cancer bio-markers in co-cultured U87+DBTRG gliomas. Animal survival was found to be significantly increased (P<0.0001) after FLVM treatment compared with control-IL17A. After FMT detection, FLVM, administered orally, was found to decrease tumor growth (P<0.0001). FLVM and FLVZ administration resulted in significant decreases in tumor hypoxia [HIF-1α (P<0.05)], angiogenesis [CD34 (P<0.05)], VEGF, IL17A and cell proliferation [Ki67 (P<0.05)] and caused a significant increase of Bax, caspase and FasL (P<0.05), compared with untreated animals. Additionally, Leptin, LPL (P<0.01), FFA (P<0.05) and adipogenesis were downregulated and no additive toxicity was found in mice except calorie-restriction like effect. Use of FLVM can be considered as a novel inhibitor of IL17A for the treatment of human gliomas.


Antineoplastic Agents/pharmacology , Glioblastoma/pathology , Interleukin-17/antagonists & inhibitors , Adipogenesis/drug effects , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Cell Line, Tumor , Coculture Techniques , Glioblastoma/blood supply , Glioblastoma/drug therapy , Glioblastoma/metabolism , Homeostasis/drug effects , Humans , Mice , Neovascularization, Pathologic/drug therapy , Xenograft Model Antitumor Assays
4.
Regul Toxicol Pharmacol ; 81: 457-467, 2016 Nov.
Article En | MEDLINE | ID: mdl-27756558

Fermented Virgin Coconut Oil (FVCO) is widely used in the Southeast Asia as food and traditional medicine. The objective of the present study is the evaluation of chronic safety of the commercialized FVCO of Malaysia and other Southeast Asian countries. A single dose of 5000 mg/kg of FVCO was administered orally in rats (each group, n = 5) for the acute toxicity study and 175, 550 and 2000 mg/kg for sub-chronic and chronic studies (each group, n = 10), respectively. The behavior, mortality, and body weight of the rats were assessed to determine the toxic effects of FVCO. The haematology, biochemistry and histopathology of the treated rats were evaluated. The treated rats were safe with the dose of 5000 mg/kg in acute, sub-chronic and chronic indication. Abnormal clinical signs and morphology (gross necroscopy), changes of organ weight, anomalous haematology and biochemistry indexes were not found in comparison with the control (p > 0.05). In general, food and water intake were higher in the treated rats related to control. It was concluded that the presence of the antioxidant active compounds of FVCO might be the reason of safety. The structure activity relationship (SAR) provides a comprehensive mechanism to determine the safety that is the presence of the electron donating phenolic groups, carbonyl groups, and carboxylic acid in the ortho and meta position of the aromatic rings. The SAR showed the antioxidant properties of myristic acid and lauric acid determined by GC-MS analysis. This result suggests the safety of FVCO for chronic use, nutritional activity that FVCO formulation complies the requirements of regulatory agencies.


Fermentation , Food Safety , Plant Oils/chemistry , Plant Oils/toxicity , Administration, Oral , Animals , Body Weight/drug effects , Coconut Oil , Dose-Response Relationship, Drug , Female , Malaysia , Male , Plant Oils/administration & dosage , Rats , Rats, Sprague-Dawley
5.
Eur J Pharm Sci ; 93: 304-18, 2016 Oct 10.
Article En | MEDLINE | ID: mdl-27552907

Glioblastoma multiforme is a highly malignant, heterogenic, and drug resistant tumor. The blood-brain barrier (BBB), systemic cytotoxicity, and limited specificity are the main obstacles in designing brain tumor drugs. In this study a computational approach was used to design brain tumor drugs that could downregulate VEGF and IL17A in glioblastoma multiforme type four. Computational screening tools were used to evaluate potential candidates for antiangiogenic activity, target binding, BBB permeability, and ADME physicochemical properties. Additionally, in vitro cytotoxicity, migration, invasion, tube formation, apoptosis, ROS and ELISA assays were conducted for molecule 6 that was deemed most likely to succeed. The efflux ratio of membrane permeability and calculated docking scores of permeability to glycoproteins (P-gps) were used to determine the BBB permeability of the molecules. The results showed BBB permeation for molecule 6, with the predicted efficiency of 0.55kcal/mol and binding affinity of -37kj/mol corresponding to an experimental efflux ratio of 0.625 and predicted -15kj/mol of binding affinity for P-gps. Molecule 6 significantly affected the angiogenesis pathways by 2-fold downregulation of IL17A and VEGF through inactivation of active sites of HSP90 (predicted binding: -37kj/mol, predicted efficiency: 0.55kcal/mol) and p23 (predicted binding: 12kj/mol, predicted efficiency: 0.17kcal/mol) chaperon proteins. Additionally, molecule 6 activated the 17.38% relative fold of ROS level at 18.3µg/mL and upregulated the caspase which lead the potential synergistic apoptosis through the antiangiogenic activity of molecule 6 and thereby the highly efficacious anticancer upshot. The results indicate that the binding of the molecules to the therapeutic target is not essential to produce a lethal effect on cancer cells of the brain and that antiangiogenic efficiency is much more important.


Angiogenesis Inhibitors/pharmacology , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Imidazoles/pharmacology , Interleukin-17/metabolism , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis Inhibitors/chemistry , Animals , Aorta/drug effects , Aorta/physiology , Blood-Brain Barrier/metabolism , Caspases/metabolism , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Computer Simulation , Humans , Imidazoles/chemistry , In Vitro Techniques , Male , Models, Biological , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
6.
BMC Complement Altern Med ; 15: 121, 2015 Apr 16.
Article En | MEDLINE | ID: mdl-25880852

BACKGROUND: Nidrakar Bati (NKB) is an herbal remedy consisted with seven medicinal herbs widely used to cure Somnifacient (sleeping aid) in South Asia as Ayurvedic medicinal system. In the present study, pharmacological and toxicological effects of this medicine was investigated in mice to validate the safety and efficacy of the herb. METHODS: Organic solvent extracts NKB were prepared using maceration method. Effect of extracts on the central nervous system was evaluated using hypnotic activity assay. Effect of the extracts on metabolic activity, assessing involvement of thyroid was conducted using hypoxia test. analgesic and anti-inflammatory activities were assessed in mice using acetic acid induced writhing, formalin induced paw edema, xylene induced ear edema assays. Anxiolytic activity was performed using plus maze, climbing out and forced swimming tests. Effect of the extracts on psychopharmacological effect was carried out using locomotor activity tests (open field, Hole-board and Hole-cross tests). Neuropharmacological effect of the extracts was performed using motor coordination (rotarod test). Toxicological potential of the extract was evaluated using gastro-intestinal activity (gastric emptying and gastrointestinal motility tests). RESULTS: The studied formulation reduced the CNS stimulant effects dose independently. In the hypoxia test, only a dose of 100 mg/kg of NKB decreased the survival time. Orally administration of the NKB (200 and 400 mg/kg) produced significant inhibition (P < 0.01) of the acetic acid-induced writhing in mice and suppressed xylene induced ear edema and formalin-induced licking response of animals in both phases of the test. NKB showed locomotor activity (p < 0.05) both in higher and lower doses (100 and 400 mg/kg). NKB increased the total ambulation dose dependently (p < 0.05). NKB, at all tested doses (100, 200 and 400 mg/kg) increased some locomotion activity parameters (ambulation, head dipping and emotional defecation) in hole board test. At higher doses (200 and 400 mg/kg), NKB showed a significant increase in hole cross test. NKB showed an increase in the time on the open arms of the maze at low to medium doses (100 and 200 mg/kg). When using the Rotarod method, NKB showed a considerable increase on motor coordination of the mice. NKB produced marked gastric emptying effect and decreased gastrointestinal motility in mice at low dose. CONCLUSIONS: NKB demonstrated various pharmacological effects and toxicological effects due to presence of several herbs in the formulation those are not closely fit for the effect of CNS depressants.


Analgesics/pharmacology , Anti-Anxiety Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Hypnotics and Sedatives/pharmacology , Medicine, Ayurvedic , Phytotherapy , Plant Extracts/pharmacology , Acetic Acid , Animals , Asia , Behavior, Animal/drug effects , Central Nervous System/drug effects , Edema/chemically induced , Edema/drug therapy , Formaldehyde , Hypoxia , Male , Mice , Motor Activity/drug effects , Pain/chemically induced , Pain/drug therapy , Plant Extracts/adverse effects , Plants, Medicinal , Sleep Initiation and Maintenance Disorders/drug therapy , Xylenes
...