Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Intervalo de año de publicación
1.
Heliyon ; 10(7): e28635, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586366

RESUMEN

Cedrus deodara is the central conifer plant affected by ozone and nitrogen pollutants among forest species worldwide. The growth of C. deodara depends upon the ectomycorrhizal (ECM) association, which is usually disturbed by these factors. This study aims to understand how these factors affect plants at physiological and biochemical levels. Three fungal strain consortiums were inoculated with two-year-old C. deodara seedlings. The stresses of 100 kg N h-1and 100 ppb O3 were applied for six months to study their impact on chlorophyll and antioxidant enzymes (SOD, CAT, and APX). The results showed that C2 (Consortium of Cedrus deodara) positively impacted the growth of selected plant species. The high photosynthesis rate was determined by enhanced chlorophyll content, and C2-treated plants showed high chlorophyll content. Relatively, chlorophyll a and b contents increased significantly in the seedlings treated with Ethylenediurea (EDU) alone and with ozone stress. In addition, a significant difference was observed between EDU and O3-treated plants (14% EDU400-O3 and 23% EDU600-O3) and the control. Overall, antioxidant activities were higher in the treated samples than in the control. The order of SOD activity was C2 (448 U/gFW) and lowest (354.7 U/gFW) in control. APX also showed higher activity in treated plants in C1 ≥ C2 ≥ C3+O3, whereas CAT activity was the highest in C2 treatments. Ozone and nitrogen-stressed plants showed higher activities than EDU-treated plants compared to non-treated ones. Our findings highlight the importance of understanding the signaling effects of numerous precursors. Moreover, an extended investigation of seedlings developing into trees must be conducted to verify the potential of ectomycorrhizal strains associated with C. deodara and comprehend EDU's role as a direct molecular scavenger of reactive toxicants.

2.
Life (Basel) ; 14(4)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38672805

RESUMEN

Wheat (Triticum aestivum L.) is an essential food crop in terms of consumption as well as production. Aflatoxin exposure has a widespread public health impact in economically developing nations, so there is a need to establish preventive techniques for these high-risk populations. Pre-harvest and post-harvest practices are the two strategies used to control aflatoxin contamination, which include the use of genetically modified crops that show resistance against Aspergillus infection, the use of pesticides, changing the planting and harvesting time of crops, and physical, chemical, and biological methods. In this research, aflatoxin detection and quantification were performed in different wheat varieties to determine quantitative differences in comparison to the European Commission's limit of 4 ppb aflatoxins in wheat. TLC for qualitative and the ELISA kit method for quantitative analysis of aflatoxins were used. Out of 56 samples, 35 were found contaminated with aflatoxins, while the remaining 21 samples did not show any presence of aflatoxins. Out of the 35 contaminated samples, 20 samples showed aflatoxin contamination within the permissible limit, while the remaining 15 samples showed aflatoxin concentration beyond the permissible level, ranging from 0.49 to 20.56 ppb. After quantification, the nine highly contaminated wheat samples were detoxified using physical, chemical, and biological methods. The efficiency of these methods was assessed, and they showed a significant reduction in aflatoxins of 53-72%, 79-88%, and 80-88%, respectively. In conclusion, the difference in aflatoxin concentration in different wheat varieties could be due to genetic variations. Furthermore, biological treatment could be the method of choice for detoxification of aflatoxins in wheat as it greatly reduced the aflatoxin concentration with no harmful effect on the quality of the grains.

3.
Mol Biol Rep ; 51(1): 18, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099977

RESUMEN

BACKGROUND: To tolerate salt and water-deficit stress, the plant adapts to the adverse environment by regulating its metabolism and expressing certain stress-induced metabolic pathways. This research analyzed the relative expression of four pea genes (P5CR, PAL1, SOD, and POX) in three pea varieties (Climax, Green grass, and Meteor) under different levels of salt and water-deficit stress. METHODS AND RESULTS: The experiments on salt stress and water-deficit stress were carried out within greenhouse settings under controlled environment. The saturation percentage was employed to create artificial salinity conditions: Control without NaCl treatment, Treatment 1: 50 mM NaCl treatment, Treatment 2: 75 mM NaCl treatment, and Treatment 3: 100 mM NaCl treatment. Field capacity (FC) was used for the development of artificial water-deficit treatments in the pots, i.e., Treatment 1 (Control; water application 100% of FC), Treatment 2 (water application 75% of FC), and Treatment 3 (water application 50% of FC). Pea genes involved in biosynthetic pathways of proline, flavonoids, and enzymatic antioxidant enzymes including P5CR, PAL1, SOD, and POX were selected based on literature. Quantitative real-time PCR using cDNA as a template was used to analyze the gene expression. Pea genes were analyzed for phylogenetic analysis in closely related crops having similarity percent identity 80% and above. In silico characterization of selected proteins including the family classification was done by the NCBI CDD and INTERPRO online servers. Results from RT-qPCR analysis showed increased expression of P5CR, PAL1, and POX genes, while SOD gene expression decreased under both stresses. Climax exhibited superior stress tolerance with elevated expression of P5CR and PAL1, while Meteor showed better tolerance through increased POX expression. Phylogenetic analysis revealed common ancestry with other species like chickpea, red clover, mung bean, and barrel clover, suggesting the cross relationship among these plant species. Conserved domain analysis of respective proteins revealed that these proteins contain PLNO 2688, PLN02457, Cu-Zn Superoxide dismutase, and secretory peroxidase conserved domains. Furthermore, protein family classification indicated that the oxidation-reduction process is the most common chemical process involved in these stresses given to pea plant which validates the relationship of these proteins. CONCLUSIONS: Salt and water-deficit stresses trigger distinct metabolic pathways, leading to the up-regulation of specific genes and the synthesis of corresponding proteins. These findings further emphasize the conservation of stress-tolerance-related genes and proteins across various plant species. This knowledge enhances our understanding of plant adaptation to stress and offers opportunities for developing strategies to improve stress resilience in crops, thereby addressing global food security challenges.


Asunto(s)
Cloruro de Sodio , /genética , Filogenia , Deshidratación , Agua , Productos Agrícolas , Superóxido Dismutasa
4.
Environ Monit Assess ; 195(12): 1430, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940800

RESUMEN

Industrial wastewater irrigation of agricultural crops can cause a lot of environmental and health problems in developing countries due to heavy metals deposition in agricultural soils as well as edible plant consumption by human beings. Therefore, this study was conducted to find out the heavy metals concentration in industrial wastewater and soil irrigated with that wastewater. In addition, the aim was to determine the impact of industrial wastewater irrigation on Parthenium hysterophorus and Zea mays genes involved in growth improvement and inhibition. For this purpose, plant samples from agriculture fields irrigated with wastewater from Hattar Industrial Estate (HIE) of Haripur, Pakistan, and control plants from non-contaminated soil irrigated with tape water were collected after 15 and 45 days of germination. Heavy metals concentration in the collected plant samples, wastewater, and soil was determined. The results revealed that the soil of the sample collection site was predominantly contaminated with Cr, Pb, Ni, Cu, Co, Zn, and Cd up to the concentrations of 38.98, 21.14, 46.01, 155.73, 12.50, 68.50, and 7.01 mg/kg, respectively. The concentrations of these heavy metals were found to surpass the permissible limit in normal agricultural soil. Expansins, cystatins (plant growth enhancers), and metacaspases (plant growth inhibitor) gene expression were studied through reverse transcription polymerase chain reaction. The results showed that the expression of these genes was higher in samples collected from wastewater-irrigated soils as compared to control. The expression of these genes was observed in 45 days old samples, 15 days old samples, and control. Taken together, this study suggests the use of Parthenium and maize for phytoremediation and that they should not be used for eating purposes if irrigated with industrial wastewater.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Aguas Residuales , Zea mays/metabolismo , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , Productos Agrícolas/metabolismo , Suelo , Riego Agrícola/métodos
5.
Environ Sci Pollut Res Int ; 30(44): 99273-99283, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37322395

RESUMEN

Volatile organic compounds (VOCs) such as formaldehyde and benzene are among the key contributors to indoor air pollution. The current situation of environmental pollution is alarming, especially indoor air pollution is becoming a challenge as affecting plants and humans. VOCs are known to adversely affect indoor plants by causing necrosis and chlorosis. In order to withstand these organic pollutants, plants are naturally equipped with an antioxidative defense system. The current research study aimed to evaluate the combined effect of formaldehyde and benzene on the antioxidative response of selected indoor C3 plants including Chlorophytum comosum, Dracaena mysore, and Ficus longifolia. After the combined application of different levels (0, 0; 2, 2; 2, 4; 4, 2; and 4, 4 ppm) of benzene and formaldehyde respectively, in an airtight glass chamber, the enzymatic and non-enzymatic antioxidants were analyzed. Analysis of total phenolics showed a significant increase (10.72 mg GAE/g) in F. longifolia; C. comosum (9.20 mg GAE/g); and D. mysore (8.74 mg GAE/g) compared to their respective controls as 3.76, 5.39, and 6.07 mg GAE/g. Total flavonoids (724 µg/g) were reported in control plants of F. longifolia which were increased to 1545.72 µg/g from 724 µg/g (in control) followed by 322.66 µg/g in D. mysore (control having 167.11 µg/g). Total carotenoid content also increased in D. mysore (0.67 mg/g) followed by C. comosum (0.63 mg/g) in response to increasing the combined dose compared to their control plants having 0.62 and 0.24 mg/g content. The highest proline content was exhibited by D. mysore (3.66 µg/g) as compared to its respective control plant (1.54 µg/g) under a 4 ppm dose of benzene and formaldehyde. A significant increase in enzymatic antioxidants including total antioxidants (87.89%), catalase (59.21 U/mg of protein), and guaiacol peroxidase (52.16 U/mg of protein) was observed in the D. mysore plant under a combined dose of benzene (2 ppm) and formaldehyde (4 ppm) with respect to their controls. Although experimental indoor plants have been reported to metabolize indoor pollutants, the current findings indicate that the combined application of benzene and formaldehyde is also affecting the physiology of indoor plants as well.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Humanos , Benceno/análisis , Contaminantes Atmosféricos/análisis , Antioxidantes/análisis , Formaldehído/análisis , Contaminación del Aire Interior/análisis , Compuestos Orgánicos Volátiles/análisis
6.
Front Plant Sci ; 14: 1286584, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38223288

RESUMEN

NAC transcription factors (TFs) are crucial to growth and defense responses in plants. Though NACs have been characterized for their role in several plants, comprehensive information regarding their role in Catharanthus roseus, a perennial ornamental plant, is lacking. Homology modelling was employed to identify and characterize NACs in C. roseus. In-vitro propagation of C. roseus plants was carried out using cell suspension and nodal culture and were elicited with two auxin-antagonists, 5-fluoro Indole Acetic Acid (5-F-IAA) and α-(phenyl ethyl-2-oxo)-Indole-Acetic-Acid (PEO-IAA) for the enhanced production of monoterpenoid indole alkaloids (MIAs) namely catharanthine, vindoline, and vinblastine. Analyses revealed the presence of 47 putative CrNAC genes in the C. roseus genome, primarily localized in the nucleus. Phylogenetic analysis categorized these CrNACs into eight clusters, demonstrating the highest synteny with corresponding genes in Camptotheca acuminata. Additionally, at least one defense or hormone-responsive cis-acting element was identified in the promoter region of all the putative CrNACs. Of the two elicitors, 5-F-IAA was effective at 200 µM to elicit a 3.07-fold increase in catharanthine, 2.76-fold in vindoline, and 2.4-fold in vinblastine production in nodal culture. While a relatively lower increase in MIAs was recorded in suspension culture. Validation of RNA-Seq by qRT-PCR showed upregulated expression of stress-related genes (CrNAC-07 and CrNAC-24), and downregulated expression of growth-related gene (CrNAC-25) in elicited nodal culture of C. roseus. Additionally, the expression of genes involved in the biosynthesis of MIAs was significantly upregulated upon elicitation. The current study provides the first report on the role of CrNACs in regulating the biosynthesis of MIAs.

7.
Plants (Basel) ; 11(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36297795

RESUMEN

Soil salinity is a major constraint adversely affecting agricultural crops including wheat worldwide. The use of plant growth promoting rhizobacteria (PGPR) to alleviate salt stress in crops has attracted the focus of many researchers due to its safe and eco-friendly nature. The current study aimed to study the genetic potential of high halophilic Bacillus strains, isolated from the rhizosphere in the extreme environment of the Qinghai-Tibetan plateau region of China, to reduce salt stress in wheat plants. The genetic analysis of high halophilic strains, NMCN1, LLCG23, and moderate halophilic stain, FZB42, revealed their key genetic features that play an important role in salt stress, osmotic regulation, signal transduction and membrane transport. Consequently, the expression of predicted salt stress-related genes were upregulated in the halophilic strains upon NaCl treatments 10, 16 and 18%, as compared with control. The halophilic strains also induced a stress response in wheat plants through the regulation of lipid peroxidation, abscisic acid and proline in a very efficient manner. Furthermore, NMCN1 and LLCG23 significantly enhanced wheat growth parameters in terms of physiological traits, i.e., fresh weight 31.2% and 29.7%, dry weight 28.6% and 27.3%, shoot length 34.2% and 31.3% and root length 32.4% and 30.2%, respectively, as compared to control plants under high NaCl concentration (200 mmol). The Bacillus strains NMCN1 and LLCG23 efficiently modulated phytohormones, leading to the substantial enhancement of plant tolerance towards salt stress. Therefore, we concluded that NMCN1 and LLCG23 contain a plethora of genetic features enabling them to combat with salt stress, which could be widely used in different bio-formulations to obtain high crop production in saline conditions.

8.
J Integr Plant Biol ; 64(6): 1157-1167, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35396901

RESUMEN

Iron and zinc are critical micronutrients for human health. Approximately two billion people suffer from iron and zinc deficiencies worldwide, most of whom rely on rice (Oryza sativa) and wheat (Triticum aestivum) as staple foods. Therefore, biofortifying rice and wheat with iron and zinc is an important and economical approach to ameliorate these nutritional deficiencies. In this review, we provide a brief introduction to iron and zinc uptake, translocation, storage, and signaling pathways in rice and wheat. We then discuss current progress in efforts to biofortify rice and wheat with iron and zinc. Finally, we provide future perspectives for the biofortification of rice and wheat with iron and zinc.


Asunto(s)
Biofortificación , Oryza , Humanos , Hierro/metabolismo , Oryza/metabolismo , Triticum/metabolismo , Zinc/metabolismo
9.
Acta Virol ; 65(4): 390-401, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34796714

RESUMEN

Liver cancer is the 5th most common cancer caused mainly due to the late detection of hepatitis. Therefore, the early detection of hepatitis through genetic markers boosts effective and remedial management. In addition, to determine the occurrence of hepatitis C virus (HCV), genotyping is indispensable as majority of hepatitis cases remain undiagnosed. The current study was designed to find the gene expression of proteases and proteases inhibitors in different hepatitis patients and to determine HCV genotypes mainly focusing on untypeable genotypes of HCV in Abbottabad, Pakistan. PCR was conducted to find the expression of proteases and protease inhibitors genes in hepatitis patients and healthy individuals. HCV genotyping was done by PCR based method and untypeable genotypes were sequenced and verified using online tools. Controlled individuals showed normal expression of cystatin C and leptin, low expression of cathepsin B while high expression of other studied genes including cathepsin D and G, TPP1 and serpin B1 could be seen. Hepatitis A patients showed high expression of leptin while other genes showed low expression. Hepatitis B patients revealed considerable variations in the cathepsin and cystatin C gene expression. Therefore, low cystatin C (high cathepsin B) and/or high cystatin C (low cathepsin B) levels can be regarded as a potential marker for hepatitis B. Hepatitis C infected patients showed high gene expression of cystatin C and leptin, so they could be useful markers for the diagnostics and prediction of the severity of HCV infections. While genotyping findings showed that about 45% of total PCR positive samples (110) were found to be of 3a genotype followed by 3b in 18%, 1a in 13.6% and 1b in 10%. About 9% of infections turned out to be mixed infections, whereas only 4.5% were untraceable by our genotyping system. Sequencing of untypeable genotypes and applying online tools revealed that the described untypeable genotypes of HCV were in fact variants of 3a genotype. Furthermore, full length characterization of these variants could help to classify them into types and subtypes. Keywords: hepatitis; genotyping; genes expression; proteases and protease inhibitors; ML; NJ.


Asunto(s)
Hepatitis A , Hepatitis C , Expresión Génica , Genotipo , Hepacivirus/genética , Hepatitis C/genética , Humanos , Pakistán , Péptido Hidrolasas , Inhibidores de Proteasas , ARN Viral
10.
Microsc Res Tech ; 84(11): 2517-2529, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33908145

RESUMEN

The present study aimed to evaluate the effects of Cd and Cr as separate and in combinations in hydroponically grown seedlings of FA-08 and SH-13 cultivars of wheat (Triticum aestivum L.). The concentrations of heavy metals were higher in the root as compared to shoot and were more pronounced in SH-13 than FA-08 cultivar. The decrease in the seedling length and biomass was observed when the metals were applied in combined form (Cd-Cr 80-120, Cd-Cr 100-120, Cr-Cd 140-80, and Cr-Cd 140-100). There were more declines in root length in the cultivar SH-13 as compared to the shoot length, as the concentration of HMs increased. The root at level Cr-140 and shoot at level Cd-100 showed more reduction in SH-13 than FA-08. The high concentration of Cd and Cr affected the root epidermis, the cortical cells, and the xylem vessel. The size and number of stomata, length of long cells and short cells, and trichome were reduced at the concentration Cd-100 and Cr-140. The present study showed that the higher concentration of Cd and Cr affects the morpho-anatomical features of both selected wheat cultivar moderately.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Biomasa , Cadmio/toxicidad , Metales Pesados/toxicidad , Plantones/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Triticum
11.
Ecotoxicol Environ Saf ; 207: 111230, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32898815

RESUMEN

Heavy metal like cadmium (Cd) is inessential and highly toxic and is posing serious environmental problems for agriculture worldwide. Presence of Cd gives rise to several physiological and structural disorders that leads to reduction in growth and performance of agricultural plants. Evidence related to subcellular distribution and accumulation of Cd is still enigmatic. Experiment was conducted using hydroponic culture to examine the subcellular accumulation of Cd in Spinacia oleracea L. leaves under Cd stress (50 µM and 100 µM); moreover, the Cd toxicity alleviation using 5 mM silicon (Si) was investigated. Our findings suggest that fresh and dry biomass, shoot and root length, leaf area and length of leaf declined when exposed to Cd stress (50 µM and 100 µM); however, an increase was noticed when Cd treated plants were supplied with Si (5 mM). The content of Ca2+, Mg2+ and Fe2+ in apoplastic washing fluid and symplasm were found to be lower in plants treated with alone Cd, when compared to control. Higher Cd2+:Ca2+, Cd2+:Fe2+ and Cd2+:Mg2+ ratios were detected under cadmium stress in both apoplast and symplast of leaves which were lowered by the addition of 5 mM Si. The novelty of the current study is the detection of increased apoplastic and symplastic Cd concentration in aerial part (i.e., spinach leaves) under alone Cd treatment which was considerably reduced when supplied with Si. Moreover, a noticeable increase in spinach growth and beneficial ionic concentrations suggest that Si can ameliorate the Cd stress in crop plants.


Asunto(s)
Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Spinacia oleracea/fisiología , Agricultura , Biomasa , Hojas de la Planta/química , Silicio , Contaminantes del Suelo/análisis , Fracciones Subcelulares/química
12.
Colloids Surf B Biointerfaces ; 179: 317-325, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30981067

RESUMEN

In the past few years, biologically synthesized silver nanoparticles (AgNPs) have been standout amongst the most utilized nanoparticles both in the field of therapeutics and clinical practices. Therefore, the current study aimed to synthesize AgNPs for the first time using aqueous root extracts of important plants of Pakistan i.e. Bergenia ciliata, Bergenia stracheyi, Rumex dantatus and Rumex hastatus and characterize them. In addition, antibacterial activity of synthesized AgNPs at 30-150 µg/well was assessed using well diffusion method against Staphylococcus aureus, Staphylococcus haemolyticus, Bacillus cereus, Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa bacterial strains that are considered most harmful bacteria for human beings. The characterization of synthesized AgNPs showed the absorption maxima ranged from 434 to 451 nm and XRD confirmed the crystalline nature of AgNPs as well as FTIR elucidated the involvement of biomolecules for reduction and capping of AgNPs. SEM determined the average size of AgNPs ranging from 25 to 73 nm and strong signals of silver were captured in EDX images. The result of antibacterial activity showed that only aqueous root extracts of all selected plants were inactive against all the tested bacterial strains. However, importantly, direct relationship between zone of inhibition of S. aureus, S. typhi and P. aeruginosa was found with increasing concentration of AgNPs of each selected plant. Moreover, S. haemolyticus was only inhibited by R. hastatus based AgNPs at only high concentrations and E. coli was inhibited by R. dantatus and R. hastatus based AgNPs. However, B. cereus was not inhibited by any AgNPs except R. hastatus and R. hastatus based AgNPs have greater antibacterial potential among all the synthesized AgNPs. These results suggest that synthesized AgNPs have improved antibacterial potential of root extracts of each selected plant and these synthesized AgNPs could be used in pharmaceutical and homeopathic industry for the cure of human diseases.


Asunto(s)
Antibacterianos/farmacología , Nanopartículas del Metal/química , Extractos Vegetales/química , Raíces de Plantas/química , Plantas Medicinales/química , Plata/farmacología , Agua/química , Bacterias/efectos de los fármacos , Tecnología Química Verde , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
13.
J Sci Food Agric ; 97(6): 1924-1930, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27539751

RESUMEN

BACKGROUND: Development of new genotypes having high oil content and desirable levels of fatty acid compositions is a major objective of rapeseed breeding programmes. In the current study combining ability was determined for oil, protein, glucosinolates and various fatty acids content using 8 × 8 full diallel in rapeseed (Brassica napus). RESULTS: Highly significant genotypic differences were observed for oil, protein, glucosinolates, oleic acid, linolenic acid and erucic acid content. Mean squares due to general combining ability (GCA), specific combining ability (SCA) and reciprocal combining ability (RCA) were highly significant (P ≤ 0.01) for biochemical traits. Parental line AUP-17 for high oil content and low glucosinolates, genotype AUP-2 for high protein and oleic acids, and AUP-18 for low lenolenic and erucic acid were best general combiners. Based on desirable SCA effects, F1 hybrids AUP-17 × AUP-20; AUP-2 × AUP-8; AUP-7 × AUP-14; AUP-2 × AUP-9; AUP-7 × AUP-14 and AUP-2 × AUP-9 were found superior involving at least one best general combiner. CONCLUSION: F1 hybrids AUP-17 × AUP-20 (for oil content); AUP-2 × AUP-8 (for protein content); AUP-7 × AUP-14 (for glucosinolates); AUP-2 × AUP-9 (for oleic acid); AUP-7 × AUP-14 (for linolenic acid) and AUP-2 × AUP-9 (for erucic acid) were found superior involving at least one best general combiner. As reciprocal crosses of AUP-14 with AUP-7 and AUP-8 were superior had low × low and low × high GCA effects for glucosinolates and oleic acid, respectively therefore, these could be exploited in future rapeseed breeding programmes to develop new lines with good quality. © 2016 Society of Chemical Industry.


Asunto(s)
Brassica napus/química , Ácidos Grasos/química , Extractos Vegetales/química , Aceites de Plantas/química , Brassica napus/genética , Brassica napus/metabolismo , Cruzamiento , Cruzamientos Genéticos , Ácidos Grasos/metabolismo , Genotipo , Extractos Vegetales/metabolismo , Aceites de Plantas/metabolismo , Semillas/química , Semillas/genética , Semillas/metabolismo
14.
Braz J Microbiol ; 46(4): 1053-64, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26691463

RESUMEN

This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, ß-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. ß-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract.


Asunto(s)
Proteínas Fúngicas/metabolismo , Trichoderma/enzimología , Quitinasas/análisis , Quitinasas/metabolismo , Endo-1,4-beta Xilanasas/análisis , Endo-1,4-beta Xilanasas/metabolismo , Proteínas Fúngicas/análisis , Glicósido Hidrolasas/análisis , Glicósido Hidrolasas/metabolismo , Micelio/química , Micelio/enzimología , Micelio/crecimiento & desarrollo , Pakistán , Trichoderma/química , Trichoderma/crecimiento & desarrollo
15.
Braz. j. microbiol ; 46(4): 1053-1064, Oct.-Dec. 2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-769641

RESUMEN

Abstract This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract.


Asunto(s)
Quitinasas/análisis , Quitinasas/química , Quitinasas/enzimología , Quitinasas/crecimiento & desarrollo , Quitinasas/metabolismo , /análisis , /química , /enzimología , /crecimiento & desarrollo , /metabolismo , Proteínas Fúngicas/análisis , Proteínas Fúngicas/química , Proteínas Fúngicas/enzimología , Proteínas Fúngicas/crecimiento & desarrollo , Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/análisis , Glicósido Hidrolasas/química , Glicósido Hidrolasas/enzimología , Glicósido Hidrolasas/crecimiento & desarrollo , Glicósido Hidrolasas/metabolismo , Micelio/análisis , Micelio/química , Micelio/enzimología , Micelio/crecimiento & desarrollo , Micelio/metabolismo , Pakistán/análisis , Pakistán/química , Pakistán/enzimología , Pakistán/crecimiento & desarrollo , Pakistán/metabolismo , Trichoderma/análisis , Trichoderma/química , Trichoderma/enzimología , Trichoderma/crecimiento & desarrollo , Trichoderma/metabolismo
16.
Pol J Microbiol ; 63(1): 95-103, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25033669

RESUMEN

In this study, the biocontrol abilities of water-soluble and volatile metabolites of three different isolates of Trichoderma (T. asperellum, T. harzianum and Trichoderma spp.) against soil borne plant pathogen Rhizoctonia solani were investigated both in vitro and in vivo. The results showed for the first time that mycelial growth inhibition of the pathogen was 74.4-67.8% with water-soluble metabolites as compared to 15.3-10.6% with volatile metabolites in vitro. In vivo antagonistic activity of Trichoderma isolates against R. solani was evaluated on bean plants under laboratory and greenhouse conditions. We observed that T. asperellum was more effective and consistent, lowering disease incidence up to 19.3% in laboratory and 30.5% in green house conditions. These results showed that three isolates of Trichoderma could be used as effective biocontrol agents against R. solani.


Asunto(s)
Enfermedades de las Plantas/prevención & control , Rhizoctonia/fisiología , Microbiología del Suelo , Trichoderma/fisiología , Hifa , Control Biológico de Vectores
17.
BMC Res Notes ; 5: 618, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23121691

RESUMEN

BACKGROUND: Our previous study on ripe apples from a progeny of a cross between the apple cultivars 'Prima' and 'Fiesta' showed a hotspot of mQTLs for phenolic compounds at the top of LG16, both in peel and in flesh tissues. In order to find the underlying gene(s) of this mQTL hotspot, we investigated the expression profiles of structural and putative transcription factor genes of the phenylpropanoid and flavonoid pathways during different stages of fruit development in progeny genotypes. RESULTS: Only the structural gene leucoanthocyanidin reductase (MdLAR1) showed a significant correlation between transcript abundance and content of metabolites that mapped on the mQTL hotspot. This gene is located on LG16 in the mQTL hotspot. Progeny that had inherited one or two copies of the dominant MdLAR1 alleles (Mm, MM) showed a 4.4- and 11.8-fold higher expression level of MdLAR1 respectively, compared to the progeny that had inherited the recessive alleles (mm). This higher expression was associated with a four-fold increase of procyanidin dimer II as one representative metabolite that mapped in the mQTL hotspot. Although expression level of several structural genes were correlated with expression of other structural genes and with some MYB and bHLH transcription factor genes, only expression of MdLAR1 was correlated with metabolites that mapped at the mQTL hotspot. MdLAR1 is the only candidate gene that can explain the mQTL for procyanidins and flavan-3-ols. However, mQTLs for other phenylpropanoids such as phenolic esters, dihydrochalcones and flavonols, that appear to map at the same locus, have so far not been considered to be dependent on LAR, as their biosynthesis does not involve LAR activity. An explanation for this phenomenon is discussed. CONCLUSIONS: Transcript abundances and genomic positions indicate that the mQTL hotspot for phenolic compounds at the top of LG16 is controlled by the MdLAR1 gene. The dominant allele of the MdLAR1 gene, causing increased content of metabolites that are potentially health beneficial, could be used in marker assisted selection of current apple breeding programs and for cisgenesis.


Asunto(s)
Antocianinas/metabolismo , Frutas/genética , Malus/genética , Oxidorreductasas/genética , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , ARN Mensajero/genética , Alelos , Cruzamientos Genéticos , Frutas/enzimología , Expresión Génica , Perfilación de la Expresión Génica , Genes Reguladores , Malus/enzimología , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , ARN Mensajero/metabolismo , Selección Genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Mol Breed ; 29(3): 645-660, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22408382

RESUMEN

Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerful high-throughput method for obtaining accurate and reproducible marker data, despite the low cost per data point. This method appears to be suitable for aligning the genetic maps of different segregating populations. The standard complexity reduction method, based on the methylation-sensitive PstI restriction enzyme, resulted in a high frequency of markers, although there was 52-54% redundancy due to the repeated sampling of highly similar sequences. Sequencing of the marker clones showed that they are significantly enriched for low-copy, genic regions. The genome coverage using the standard method was 55-76%. For improved genome coverage, an alternative complexity reduction method was examined, which resulted in less redundancy and additional segregating markers. The DArT markers proved to be of high quality and were very suitable for genetic mapping at low cost for the apple, providing moderate genome coverage. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9579-5) contains supplementary material, which is available to authorized users.

19.
J Exp Bot ; 63(8): 2895-908, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22330898

RESUMEN

Apple (Malus×domestica Borkh) is among the main sources of phenolic compounds in the human diet. The genetic basis of the quantitative variations of these potentially beneficial phenolic compounds was investigated. A segregating F1 population was used to map metabolite quantitative trait loci (mQTLs). Untargeted metabolic profiling of peel and flesh tissues of ripe fruits was performed using liquid chromatography-mass spectrometry (LC-MS), resulting in the detection of 418 metabolites in peel and 254 in flesh. In mQTL mapping using MetaNetwork, 669 significant mQTLs were detected: 488 in the peel and 181 in the flesh. Four linkage groups (LGs), LG1, LG8, LG13, and LG16, were found to contain mQTL hotspots, mainly regulating metabolites that belong to the phenylpropanoid pathway. The genetics of annotated metabolites was studied in more detail using MapQTL®. A number of quercetin conjugates had mQTLs on LG1 or LG13. The most important mQTL hotspot with the largest number of metabolites was detected on LG16: mQTLs for 33 peel-related and 17 flesh-related phenolic compounds. Structural genes involved in the phenylpropanoid biosynthetic pathway were located, using the apple genome sequence. The structural gene leucoanthocyanidin reductase (LAR1) was in the mQTL hotspot on LG16, as were seven transcription factor genes. The authors believe that this is the first time that a QTL analysis was performed on such a high number of metabolites in an outbreeding plant species.


Asunto(s)
Frutas/genética , Frutas/metabolismo , Ligamiento Genético , Malus/genética , Malus/metabolismo , Fenoles/metabolismo , Sitios de Carácter Cuantitativo/genética , Arabidopsis/genética , Mapeo Cromosómico , Cruzamientos Genéticos , Genes de Plantas/genética , Genotipo , Humanos , Concentración de Iones de Hidrógeno , Redes y Vías Metabólicas/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...