Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 92, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194006

RESUMEN

Nanoparticles (NPs) serve immense roles in various fields of science. They have vastly upgraded conventional methods in the fields of agriculture and food sciences to eliminate growing threats of crop damage and disease, caused by various phytopathogens including bacteria, fungi, viruses, and some insects. Bacterial diseases resulted in mass damage of crops by adopting antibacterial resistance, which has proved to be a major threat leading to food scarcity. Therefore, numerous NPs with antibacterial potentials have been formulated to overcome the problem of antibiotic resistance alongside an increase in crop yield and boosting plant immunity. NPs synthesized through green synthesis techniques have proved to be more effective and environment-friendly than those synthesized via chemical methods. NPs exhibit great roles in plants ranging from enhanced crop yield to disease suppression, to targeted drug and pesticide deliveries inside the plants and acting as biosensors for pathogen detection. NPs serves major roles in disruption of cellular membranes, ROS production, altering of DNA and protein entities and changing energy transductions. This review focuses on the antibacterial effect of NPs on several plant bacterial pathogens, mostly, against Pseudomonas syringe, Ralstonia solanacearum, Xanthomonas axonopodis, Clavibacter michiganensisand Pantoea ananatis both in vivo and ex vivo, thereby minimizing their antibacterial resistance and enhancing the plants acquired immunity. Therefore, NPs present a safer and more reliable bactericidal activity against various disease-causing bacteria in plants.


Asunto(s)
Bacterias , Productos Agrícolas , Agricultura , Antibacterianos/farmacología , Membrana Celular
2.
Heliyon ; 9(6): e16928, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37346326

RESUMEN

Nanotechnology is the most advanced and rapidly progressing field of science and technology. It primarily deals with developing novelty in nanomaterials by understanding and controlling matter at the nanoscale level. Silver nanoparticles (AgNPs) are the most prominent nanoparticles incorporated with wide-ranging applications, owing to their distinct characteristics. Different methods have been employed for nanoparticles synthesis like chemical method, physical method, photochemical method, top-down/bottom-up approach and biological methods. The positive impacts of silver nanoparticles have been observed in various economy-based sectors, including agriculture. The scientific curiosity about AgNPs in agriculture and plant biotechnology has shown optimum efficacy over the last few years. It not only enhances seed germination and plant growth, but also improves the quantum efficiency of the photosynthetic process. AgNPs play a vital role in agriculture by having several applications that are crucial for ensuring food security and improving crop production. Moreover, they also act as nano-pesticides, providing sufficient dose to the target plants without releasing unnecessary pesticides into the environment. Nano-fertilizers slowly release nutrients to the plants, thereby preventing excessive nutrient loss. AgNPs are utilized for effective and non-toxic pest management, making them an excellent tool for combating pests safely. They combine either edible or non-biodegradable polymers for active food packaging. In addition, AgNPs also possess diverse biological properties such as antiviral, antibacterial and antifungal activities, which protect plants from hazardous microbes. The aim of this review is to comprehensively survey and summarize recent literature regarding the positive and negative impacts of AgNPs on plant growth, as well as their agricultural applications.

3.
Heliyon ; 9(3): e14579, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36967924

RESUMEN

Nano-fertilizers are superior to conventional fertilizers, but their effectiveness has not yet been adequately explored in the field of agriculture. In this study, silver nanoparticles using leaves extract of an Alnus nitida plant were synthesized and further doped with urea to enhance the plant biomass and metabolic contents. The synthesized Alnus nitida silver nanoparticles (A.N-AgNPs) and urea-doped silver nanoparticles (U-AgNPs) were characterized using Scanning Electron Microscopy, Transmission Electron Microscopy, Powder X-ray Diffraction, and Energy Dispersive X-ray. The wheat seeds were grown in media under controlled conditions in the plant growth chamber. The effectiveness of nanoparticles was studied using different A.N-AgNPs and U-AgNPs concentrations (0.75 µg/ml, 1.5 µg/ml, 3 µg/ml, 6 µg/ml, and 15 µg/ml). They were compared with a control group that received no dose of nanoparticles. The plant biomass, yield parameters, and wheat quality were analyzed. The effect of silver nanoparticles and U-AgNPs were examined in developing wheat seeds and their potency in combating biotic stresses such as nematodes, herbivores, fungi, insects, weeds and bacteria; abiotic stresses such as salinity, ultraviolet radiation, heavy metals, temperature, drought, floods etc. In the seedlings, six possible phytochemicals at a spray dose of 6 µg/ml of U-AgNPs were identified such as dihydroxybenzoic acids, vanillic acid, apigenin glucosidase, p-coumaric acid, sinapic acid, and ferulic acid whereas in other treatments the number of phenolic compounds was lesser in number as well as in concentrations. Moreover, various parameters of the wheat plants, including their dry weight and fresh weight, were assessed and compared with control group. The findings of the study indicated that A.N-AgNPs and U-AgNPs act as metabolite elicitors that induced secondary metabolite production (total phenolic, flavonoid, and chlorophyll contents). In addition, U-AgNPs provided a nitrogen source and were considered a smart nitrogen fertilizer that enhanced the plant biomass, yields, and metabolite production.

4.
Anticancer Agents Med Chem ; 22(18): 3086-3096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35546764

RESUMEN

Schiff bases and their transition metal complexes play an important role in the field of medicine, in particular in the treatment of cancer. Since the discovery of the cisplatin anticancer activity, great efforts have focused on the rational design of metal-based anticancer drugs that can be potentially used for the treatment of cancer. However, drug resistance and significant side effects greatly limit its clinical application. This has inspired medicinal chemists to employ various strategies in the development of novel and effective anticancer drugs. Recently, a greater number of transition metal complexes have been designed and evaluated for their anticancer activities, and some of them were at different stages of clinical studies. Amongst these, platinum, palladium, gold and silver complexes have an important place within medicinal and inorganic chemistry. This review article discusses Schiff bases and their complexes with selected transition metals (Pd, Pt, Ag, Au) for anticancer activity against different cancer cell lines.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias , Antineoplásicos/química , Cisplatino , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Oro/química , Oro/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Paladio/química , Paladio/farmacología , Platino (Metal)/química , Bases de Schiff/química , Bases de Schiff/farmacología , Plata
5.
Curr Med Imaging Rev ; 15(9): 873-883, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32013812

RESUMEN

BACKGROUND: Lung cancers or (Bronchogenic-Carcinomas) are the disease in certain parts of the lungs in which irresistible multiplication of abnormal cells leads to the inception of a tumor. Lung cancers consisting of two substantial forms based on the microscopic appearance of tumor cells are: Non-Small-Cell-Lung-Cancer (NSCLC) (80 to 85%) and Small-Cell-Lung-Cancer (SCLC) (15 to 20%). DISCUSSION: Lung cancers are existing luxuriantly across the globe and the most prominent cause of death in advanced countries (USA & UK). There are many causes of lung cancers in which the utmost imperative aspect is the cigarette smoking. During the early stage, there is no perspicuous sign/symptoms but later many symptoms emerge in the infected individual such as insomnia, headache, pain, loss of appetite, fatigue, coughing etc. Lung cancers can be diagnosed in many ways, such as history, physical examination, chest X-rays and biopsy. However, after the diagnosis and confirmation of lung carcinoma, various treatment approaches are existing for curing of cancer in different stages such as surgery, radiation therapy, chemotherapy, and immune therapy. Currently, novel techniques merged that revealed advancements in detection and curing of lung cancer in which mainly includes: microarray analysis, gene expression profiling. CONCLUSION: Consequently, the purpose of the current analysis is to specify and epitomize the novel literature pertaining to the development of cancerous cells in different parts of the lung, various preeminent approaches of prevention, efficient diagnostic procedure, and treatments along with novel technologies for inhibition of cancerous cell growth in advance stages.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Carcinoma Pulmonar de Células Pequeñas/diagnóstico , Carcinoma Pulmonar de Células Pequeñas/terapia , Humanos
6.
Infect Disord Drug Targets ; 18(2): 96-104, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28820067

RESUMEN

Ebola virus (EBOV) was discovered for the first time in 1976. It belongs to the family Filoviridae, which causes hemorrhagic fever that could lead to death in a few days. West Africa faced a major outbreak where symptoms appeared in the form of chills, myalgia, fever, diarrhea, and vomiting, and the disease finally reached a severe state as a result of hemorrhagic complications and failure of multiple organs. EBOV spreads by contact with body fluids of an infected person such as blood, saliva, urine, and seminal fluid, and also spreads by a contact with contaminated surfaces. Viral infection depends on the virus and host defenses. When the virus invades the body, the immune system becomes activated in an attempt to neutralize it. However, if this fails, EBOV viral infection spreads and leads to impaired innate and adaptive immune responses and uncontrollable viral replication. Consequently, the symptomatic patient is isolated and various medicinal regimens such as BCX-4430n TKM- EBOV are used, to cure EBOV, though, a specific treatment is not available. Accordingly, the aim of the present review is to survey and summarize the recent literature pertaining to the outbreak of EBOV, systematic infection of the human body, along with transmission and treatment. In addition, the review also aims to identify areas that need more research and development in combatting this dangerous virus. In the meantime, it should be noted that there is no fully FDA approved drug to treat infections by this virus. Therefore, there is a pressing need to focus on drug discovery along with public awareness to effectively manage any outbreaks in the future.


Asunto(s)
Brotes de Enfermedades/prevención & control , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/transmisión , Fiebre Hemorrágica Ebola/virología , Adenina/análogos & derivados , Adenosina/análogos & derivados , África Occidental/epidemiología , Animales , Antivirales/uso terapéutico , Descubrimiento de Drogas , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Humanos , Sistema Inmunológico/inmunología , Nucleósidos de Purina/uso terapéutico , Pirrolidinas , Replicación Viral/inmunología
7.
Int J Health Sci (Qassim) ; 3(1): 65-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21475513

RESUMEN

Cilia are hair-like structures extending from the cell membrane, perform diverse biological functions. Primary defects in the structure and function of sensory and motile cilia result in multiple ciliopathies. The most prominent genetic abnormality involving motile cilia is primary ciliary dyskinesia (PCD) or Kartageners syndrome. PCD is a rare, usually autosomal recessive, genetically heterogeneous disorder characterized by sino-pulmonary disease, laterality defects and male infertility. One of the important components of cilia is the Dynein. Ciliary ultrastructural defects are identified in approximately 90% of PCD patients and involve the outer dynein arms, inner dynein arms, or both. Diagnosing PCD is challenging and requires a compatible clinical phenotype together with tests such as ciliary ultrastructural analysis, immunofluorescent staining, ciliary beat assessment, and/or nasal nitric oxide measurements. Increased understanding of the pathogenesis will aid in better diagnosis and treatment of PCD. The aim of the article is to present the basic defect involved in the etiology of this interesting syndrome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA