Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 13(1): 11, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930890

RESUMEN

TMEM165 deficiency leads to skeletal disorder characterized by major skeletal dysplasia and pronounced dwarfism. However, the molecular mechanisms involved have not been fully understood. Here, we uncover that TMEM165 deficiency impairs the synthesis of proteoglycans by producing a blockage in the elongation of chondroitin-and heparan-sulfate glycosaminoglycan chains leading to the synthesis of proteoglycans with shorter glycosaminoglycan chains. We demonstrated that the blockage in elongation of glycosaminoglycan chains is not due to defect in the Golgi elongating enzymes but rather to availability of the co-factor Mn2+. Supplementation of cell with Mn2+ rescue the elongation process, confirming a role of TMEM165 in Mn2+ Golgi homeostasis. Additionally, we showed that TMEM165 deficiency functionally impairs TGFß and BMP signaling pathways in chondrocytes and in fibroblast cells of TMEM165 deficient patients. Finally, we found that loss of TMEM165 impairs chondrogenic differentiation by accelerating the timing of Ihh expression and promoting early chondrocyte maturation and hypertrophy. Collectively, our results indicate that TMEM165 plays an important role in proteoglycan synthesis and underline the critical role of glycosaminoglycan chains structure in the regulation of chondrogenesis. Our data also suggest that Mn2+ supplementation may be a promising therapeutic strategy in the treatment of TMEM165 deficient patients.


Asunto(s)
Antiportadores/deficiencia , Antiportadores/metabolismo , Proteínas de Transporte de Catión/deficiencia , Proteínas de Transporte de Catión/metabolismo , Diferenciación Celular/genética , Condrocitos/metabolismo , Condrocitos/patología , Sulfatos de Condroitina/biosíntesis , Enanismo/metabolismo , Proteoglicanos de Heparán Sulfato/biosíntesis , Transducción de Señal/genética , Animales , Antiportadores/genética , Estudios de Casos y Controles , Proteínas de Transporte de Catión/genética , Línea Celular Tumoral , Condrogénesis/genética , Enanismo/patología , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes/métodos , Glicosilación , Células HEK293 , Humanos , Hipertrofia/metabolismo , Ratones , Transfección
2.
Chemosphere ; 258: 127350, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32554012

RESUMEN

The adverse effects of glyphosate herbicide on plants are well recognised, however, potential hormetic effects have not been well studied. This study aimed to use tomato as a model organism to explore the potential hormetic effects of glyphosate in water (0-30 mg L-1) and in compost soil (0-30 mg kg-1). The growth-promoting effects of glyphosate at concentrations of 0.03-1 mg L-1 in water or 0.03-1 mg kg-1 in compost were demonstrated in tomato for the first time. These hormetic effects were manifest as increased hypocotyl and radicle growth of seedlings germinated on paper towel soaked in glyphosate solution and also in crops which had been sprayed with glyphosate. Increased rates of photosynthesis (up to 2-fold) were observed in 4-week old crops when seeds were sown in compost amended with glyphosate and also when leaves were sprayed with glyphosate. The examination of chloroplast morphology using transmission electron microscopy revealed that the hormetic effects were associated with elongation of chloroplasts, possibly due to lateral expansion of thylakoid grana.


Asunto(s)
Germinación/efectos de los fármacos , Glicina/análogos & derivados , Herbicidas/toxicidad , Solanum lycopersicum/fisiología , Cloroplastos/efectos de los fármacos , Productos Agrícolas/efectos de los fármacos , Glicina/toxicidad , Hormesis/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Plantones/efectos de los fármacos , Semillas/efectos de los fármacos , Suelo , Glifosato
3.
Chem Sci ; 10(4): 1052-1063, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30774901

RESUMEN

Although a number of advances have been made in RNA sequencing and structural characterization, the lack of a method for directly determining the sequence and structure of single RNA molecules has limited our ability to probe heterogeneity in gene expression at the level of single cells. Here we present a method for direct nucleotide identification and structural label mapping of single RNA molecules via Quantum Molecular Sequencing (QMSeq). The method combines non-perturbative quantum tunneling spectroscopy to probe the molecular orbitals of ribonucleotides, new experimental biophysical parameters that fingerprint these molecular orbitals, and a machine learning classification algorithm to distinguish between the ribonucleotides. The algorithm uses tunneling spectroscopy measurements on an unknown ribonucleotide to determine its chemical identity and the presence of local chemical modifications. Combining this with structure-dependent chemical labeling presents the possibility of mapping both the sequence and local structure of individual RNA molecules. By optimizing the base-calling algorithm, we show a high accuracy for both ribonucleotide discrimination (>99.8%) and chemical label identification (>98%) with a relatively modest molecular coverage (35 repeat measurements). This lays the groundwork for simultaneous sequencing and structural mapping of single unknown RNA molecules, and paves the way for probing the sequence-structure-function relationship within the transcriptome at an unprecedented level of detail.

4.
ACS Nano ; 11(11): 11169-11181, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-28968085

RESUMEN

Several nanoscale electronic methods have been proposed for high-throughput single-molecule nucleic acid sequence identification. While many studies display a large ensemble of measurements as "electronic fingerprints" with some promise for distinguishing the DNA and RNA nucleobases (adenine, guanine, cytosine, thymine, and uracil), important metrics such as accuracy and confidence of base calling fall well below the current genomic methods. Issues such as unreliable metal-molecule junction formation, variation of nucleotide conformations, insufficient differences between the molecular orbitals responsible for single-nucleotide conduction, and lack of rigorous base calling algorithms lead to overlapping nanoelectronic measurements and poor nucleotide discrimination, especially at low coverage on single molecules. Here, we demonstrate a technique for reproducible conductance measurements on conformation-constrained single nucleotides and an advanced algorithmic approach for distinguishing the nucleobases. Our quantum point contact single-nucleotide conductance sequencing (QPICS) method uses combed and electrostatically bound single DNA and RNA nucleotides on a self-assembled monolayer of cysteamine molecules. We demonstrate that by varying the applied bias and pH conditions, molecular conductance can be switched ON and OFF, leading to reversible nucleotide perturbation for electronic recognition (NPER). We utilize NPER as a method to achieve >99.7% accuracy for DNA and RNA base calling at low molecular coverage (∼12×) using unbiased single measurements on DNA/RNA nucleotides, which represents a significant advance compared to existing sequencing methods. These results demonstrate the potential for utilizing simple surface modifications and existing biochemical moieties in individual nucleobases for a reliable, direct, single-molecule, nanoelectronic DNA and RNA nucleotide identification method for sequencing.


Asunto(s)
ADN/química , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nanotecnología/métodos , ARN/química , Secuencia de Bases , ADN/genética , Nucleótidos/química , Nucleótidos/genética , ARN/genética
5.
Small ; 13(11)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28067976

RESUMEN

Nanoelectronic DNA sequencing can provide an important alternative to sequencing-by-synthesis by reducing sample preparation time, cost, and complexity as a high-throughput next-generation technique with accurate single-molecule identification. However, sample noise and signature overlap continue to prevent high-resolution and accurate sequencing results. Probing the molecular orbitals of chemically distinct DNA nucleobases offers a path for facile sequence identification, but molecular entropy (from nucleotide conformations) makes such identification difficult when relying only on the energies of lowest-unoccupied and highest-occupied molecular orbitals (LUMO and HOMO). Here, nine biophysical parameters are developed to better characterize molecular orbitals of individual nucleobases, intended for single-molecule DNA sequencing using quantum tunneling of charges. For this analysis, theoretical models for quantum tunneling are combined with transition voltage spectroscopy to obtain measurable parameters unique to the molecule within an electronic junction. Scanning tunneling spectroscopy is then used to measure these nine biophysical parameters for DNA nucleotides, and a modified machine learning algorithm identified nucleobases. The new parameters significantly improve base calling over merely using LUMO and HOMO frontier orbital energies. Furthermore, high accuracies for identifying DNA nucleobases were observed at different pH conditions. These results have significant implications for developing a robust and accurate high-throughput nanoelectronic DNA sequencing technique.


Asunto(s)
Fenómenos Biofísicos , Electrones , Nanopartículas/química , Nucleótidos/análisis , Teoría Cuántica , Microscopía de Túnel de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA