Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Heliyon ; 10(8): e28716, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38628745

Different grasping gestures result in the change of muscular activity of the forearm muscles. Similarly, the muscular activity changes with a change in grip force while grasping the object. This change in muscular activity, measured by a technique called Electromyography (EMG) is used in the upper limb bionic devices to select the grasping gesture. Previous research studies have shown gesture classification using pattern recognition control schemes. However, the use of EMG signals for force manipulation is less focused, especially during precision grasping. In this study, an early predictive control scheme is designed for the efficient determination of grip force using EMG signals from forearm muscles and digit force signals. The optimal pattern recognition (PR) control schemes are investigated using three different inputs of two signals: EMG signals, digit force signals and a combination of EMG and digit force signals. The features extracted from EMG signals included Slope Sign Change, Willison Amplitude, Auto Regressive Coefficient and Waveform Length. The classifiers used to predict force levels are Random Forest, Gradient Boosting, Linear Discriminant Analysis, Support Vector Machines, k-nearest Neighbors and Decision Tree. The two-fold objectives of early prediction and high classification accuracy of grip force level were obtained using EMG signals and digit force signals as inputs and Random Forest as a classifier. The earliest prediction was possible at 1000 ms from the onset of the gripping of the object with a mean classification accuracy of 90 % for different grasping gestures. Using this approach to study, an early prediction will result in the determination of force level before the object is lifted from the surface. This approach will also result in better biomimetic regulation of the grip force during precision grasp, especially for a population facing vision deficiency.

2.
Biomed Phys Eng Express ; 7(6)2021 09 15.
Article En | MEDLINE | ID: mdl-34474400

Grasping of the objects is the most frequent activity performed by the human upper limb. The amputations of the upper limb results in the need for prosthetic devices. The myoelectric prosthetic devices use muscle signals and apply control techniques for identification of different levels of hand gesture and force levels. In this study; a different level force contraction experiment was performed in which Electromyography (EMGs) signals and fingertip force signals were acquired. Using this experimental data; a two-step feature selection process is applied for the designing of a pattern recognition algorithm for the classification of different force levels. The two step feature selection process consist of generalized feature ranking using ReliefF, followed by personalized feature selection using Neighborhood Component Analysis (NCA) from the shortlisted features by earlier technique. The classification algorithms applied in this study were Support Vector Machines (SVM) and Random Forest (RF). Besides feature selection; optimization of the number of muscles during classification of force levels was also performed using designed algorithm. Based on this algorithm; the maximum classification accuracy using SVM classifier and two muscle set was achieved as high as 99%. The optimal feature set consisted features such as Auto Regressive coefficients, Willison Amplitude and Slope Sign Change. The mean classification accuracy for different subjects, achieved using SVM and RF was 94.5% and 91.7% respectively.


Hand Strength , Algorithms , Electromyography , Humans , Pattern Recognition, Automated , Support Vector Machine
3.
Biomed Phys Eng Express ; 7(3)2021 04 30.
Article En | MEDLINE | ID: mdl-33882462

The hand amputee is deprived of number of activities of daily living. To help the hand amputee, it is important to learn the pattern of muscles activity. There are several elements of tasks, which involve forearm along with the wrist and hand. The one very important task is pick and place activity performed by the hand. A pick and place action is a compilation of different finger motions for the grasping of objects at different force levels. This action may be better understood by learning the electromyography signals of forearm muscles. Electromyography is the technique to acquire electrical muscle activity that is used for the pattern recognition technique of assistive devices. Regarding this, the different classification characterizations of EMG signals involved in the pick and place action, subjected to variable grip span and weights were considered in this study. A low-level force measuring gripper, capable to bear the changes in weights and object spans was designed and developed to simulate the task. The grip span varied from 6 cm to 9 cm and the maximum weight used in this study was 750 gms. The pattern recognition classification methodology was performed for the differentiation of phases of the pick and place activity, grip force, and the angular deviation of metacarpal phalangeal (MCP) joint. The classifiers used in this study were decision tree (DT), support vector machines (SVM) and k-nearest neighbor (k-NN) based on the feature sets of the EMG signals. After analyses, it was found that k-NN performed best to classify different phases of the activity and relative deviation of MCP joint with an average classification accuracy of 82% and 91% respectively. However; the SVM performed best in classification of force with a particular feature set. The findings of the study would be helpful in designing the assistive devices for hand amputee.


Activities of Daily Living , Amputees , Electromyography , Hand , Hand Strength , Humans
4.
IEEE Rev Biomed Eng ; 13: 248-260, 2020.
Article En | MEDLINE | ID: mdl-31689209

Bio-signals are distinctive factors in the design of human-machine interface, essentially useful for prosthesis, orthosis, and exoskeletons. Despite the progress in the analysis of pattern recognition based devices; the acceptance of these devices is still questionable. One reason is the lack of information to identify the possible combinations of features and classifiers. Besides; there is also a need for optimal selection of various sensors for sensations such as touch, force, texture, along with EMGs/EEGs. This article reviews the two bio-signal techniques, named as electromyography and electroencephalography. The details of the features and the classifiers used in the data processing for upper limb assist devices are summarised here. Various features and their sets are surveyed and different classifiers for feature sets are discussed on the basis of the classification rate. The review was carried out on the basis of the last 10-12 years of published research in this area. This article also outlines the influence of modality of EMGs and EEGs with other sensors on classifications. Also, other bio-signals used in upper limb devices and future aspects are considered.


Electroencephalography , Electromyography , Self-Help Devices , Upper Extremity/physiology , Algorithms , Female , Humans , Male , Neural Networks, Computer , Pattern Recognition, Automated , Signal Processing, Computer-Assisted
...