Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 4: 331, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24009619

RESUMEN

Hyoscyamus albus is a well-known source of the tropane alkaloids, hyoscyamine and scopolamine, which are biosynthesized in the roots. To assess the major biochemical adaptations that occur in the roots of this plant in response to iron deficiency, we used a small-scale proteomic approach in which 100 mg of root tips were treated with and without Fe, respectively, for 5 days. Two-dimensional mini gels showed that 48 spots were differentially accumulated between the two conditions of Fe availability and a further 36 proteins were identified from these spots using MALDI-QIT-TOF mass spectrometry. The proteins that showed elevated levels in the roots lacking Fe were found to be associated variously with carbohydrate metabolism, cell differentiation, secondary metabolism, and oxidative defense. Most of the proteins involved in carbohydrate metabolism were increased in abundance, but mitochondrial NAD-dependent malate dehydrogenase was decreased, possibly resulting in malate secretion. Otherwise, all the proteins showing diminished levels in the roots were identified as either Fe-containing or ATP-requiring. For example, a significant decrease was observed in the levels of hyoscyamine 6ß-hydroxylase (H6H), which requires Fe and is involved in the conversion of hyoscyamine to scopolamine. To investigate the effects of Fe deficiency on alkaloid biosynthesis, gene expression studies were undertaken both for H6H and for another Fe-dependent protein, Cyp80F1, which is involved in the final stage of hyoscyamine biosynthesis. In addition, tropane alkaloid contents were determined. Reduced gene expression was observed in the case of both of these proteins and was accompanied by a decrease in the content of both hyoscyamine and scopolamine. Finally, we have discussed energetic and Fe-conservation strategies that might be adopted by the roots of H. albus to maintain iron homeostasis under Fe-limiting conditions.

2.
Plant Physiol Biochem ; 58: 166-73, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22819862

RESUMEN

Riboflavin secretion by Hyoscyamus albus hairy roots under Fe deficiency was examined to determine where riboflavin is produced and whether production occurs via an enhancement of riboflavin biosynthesis or a stimulation of flavin mononucleotide (FMN) hydrolysis. Confocal fluorescent microscopy showed that riboflavin was mainly localized in the epidermis and cortex of the root tip and, at the cellular level, in the apoplast. The expressions of three genes involved in the de novo biosynthesis of riboflavin (GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase; 6,7-dimethyl-8-ribityllumazine synthase; riboflavin synthase) were compared between Fe-starved and Fe-replete roots over a time-course of 7 days, using RT-PCR. All three genes were found to be highly expressed over the period 1-7 days in the roots cultured under Fe deficiency. Since riboflavin secretion began to be detected only from 3 days, there was a lag phase observed between the increased transcript accumulations and riboflavin secretion. To determine whether FMN hydrolysis might contribute to the riboflavin secretion in Fe-deficient root cultures, FMN hydrolase activity was determined and was found to be substantially increased after 3 days, when riboflavin secretion became detectable. These results suggested that not only de novo riboflavin synthesis but also the hydrolysis of FMN contributes to riboflavin secretion under conditions of Fe deficiency. Respiration activity was assayed during the time-course, and was also found to be enhanced after 3 days under Fe deficiency, suggesting a possible link with riboflavin secretion. On the other hand, several respiratory inhibitors were found not to affect riboflavin synthase transcript accumulation.


Asunto(s)
Enzimas/metabolismo , Mononucleótido de Flavina/metabolismo , Hyoscyamus/metabolismo , Deficiencias de Hierro , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Riboflavina/metabolismo , Respiración de la Célula/genética , Enzimas/genética , Genes de Plantas , Hidrólisis , Hyoscyamus/enzimología , Hyoscyamus/genética , Proteínas de Plantas/genética , Raíces de Plantas/enzimología , Riboflavina/genética , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...